Study

Nitrogen assessments in a constructed and natural salt marsh of San Diego Bay

  • Published source details Langis R., Zalejko M. & Zedler J.B. (1991) Nitrogen assessments in a constructed and natural salt marsh of San Diego Bay. Ecological Applications, 1, 40-51

Actions

This study is summarised as evidence for the following.

Action Category

Reprofile/relandscape: brackish/salt marshes

Action Link
Marsh and Swamp Conservation

Directly plant non-woody plants: brackish/saline wetlands

Action Link
Marsh and Swamp Conservation
  1. Reprofile/relandscape: brackish/salt marshes

    A site comparison study in 1989 of two estuarine salt marshes in California, USA (Langis et al. 1991) found that a marsh created by reprofiling, planting California cordgrass Spartina foliosa and fertilizing contained less cordgrass biomass, after 4–5 years, than an adjacent natural marsh. The created marsh contained 192 g/m2 above-ground California cordgrass biomass: significantly lower than the 454 g/m2 in the natural marsh. Methods: In July 1989, California cordgrass was cut from 9–12 quadrats at a similar elevation in the two marshes, then dried and weighed. One marsh (same marsh as in Study 3) had been created by reprofiling into islands and creeks (autumn 1984), planting California cordgrass along creek banks (March 1985) and fertilizing with urea (25 g/m2; four times 1985–1986). This study evaluates the combined effect of these interventions on any non-planted cordgrass. A nearby natural marsh, exposed to similar tides, was chosen for comparison.

    (Summarised by: Nigel Taylor)

  2. Directly plant non-woody plants: brackish/saline wetlands

    A site comparison study in 1989 of two estuarine salt marshes in California, USA (Langis et al. 1991) found that a marsh created by reprofiling, planting California cordgrass Spartina foliosa and fertilizing contained less cordgrass biomass, after 4–5 years, than an adjacent natural marsh. The created marsh contained 192 g/m2 above-ground California cordgrass biomass: significantly lower than the 454 g/m2 in the natural marsh. Methods: In July 1989, California cordgrass was cut from 9–12 quadrats at a similar elevation in the two marshes, then dried and weighed. One marsh (same marsh as in Study 8) had been created by reprofiling into islands and creeks (autumn 1984), planting California cordgrass along creek banks (March 1985) and fertilizing with urea (25 g/m2; four times 1985–1986). This study evaluates the combined effect of these interventions on any non-planted cordgrass. A nearby natural marsh, exposed to similar tides, was chosen for comparison.

    (Summarised by: Nigel Taylor)

Output references

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 18

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape Programme Red List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Bern wood Supporting Conservation Leaders National Biodiversity Network Sustainability Dashboard Frog Life The international journey of Conservation - Oryx British trust for ornithology Cool Farm Alliance UNEP AWFA Butterfly Conservation People trust for endangered species Vincet Wildlife Trust