Study

The ecological effects of Suaeda salsa on repairing heavily degraded coastal saline-alkaline wetlands in the Yellow River Delta

  • Published source details Guan B., Yu J., Lu Z., Xie W., Chen X. & Wang X. (2011) 黄河三角洲重度退化滨海湿地盐地碱蓬的生态修复效果. Acta Ecologica Sinica, 31, 4835-4840.

Actions

This study is summarised as evidence for the following.

Action Category

Add below-ground organic matter before/after planting non-woody plants: brackish/saline wetlands

Action Link
Marsh and Swamp Conservation

Introduce seeds of non-woody plants: brackish/saline wetlands

Action Link
Marsh and Swamp Conservation

Add inorganic fertilizer before/after planting non-woody plants: brackish/saline wetlands

Action Link
Marsh and Swamp Conservation
  1. Add below-ground organic matter before/after planting non-woody plants: brackish/saline wetlands

    A replicated, controlled, before-and-after study in an estuarine wetland in eastern China (Guan et al. 2011) found that mixing reed debris into the sediment before sowing seeds of seablite Suaeda salsa increased seablite biomass, but had no significant effect on its density or height. Five months after sowing, plots amended with reed debris contained a greater above-ground biomass of seablite (771 g/m2) than unamended plots (396 g/m2). Meanwhile, there was no significant difference between treatments in seablite density (amended: 531 plants/m2; unamended: 365 plants/m2) or height (amended: 63 cm; unamended: 60 cm). Height was also statistically similar under both treatments for measurements taken 1–4 months after sowing (amended: 15–56 cm; unamended: 12–51 cm). Methods: In May 2009, three pairs of 6-m2 plots were established in a degraded, unvegetated, hypersaline/alkaline wetland in the Yellow River estuary. Three plots were prepared by ploughing (to 20 cm depth) and mixing in reed debris (2 kg/m2). The other three plots had been prepared by ploughing only. Approximately 5,000 seablite seeds were sown onto each plot, then watered. Vegetation was sampled in five 1-m2 quadrats/plot until October 2009. Biomass measurements involved samples of approximately 100 plants/plot.

    (Summarised by: Nigel Taylor)

  2. Introduce seeds of non-woody plants: brackish/saline wetlands

    A replicated, before-and-after study in an alkaline, estuarine wetland in eastern China (Guan et al. 2011) reported that five months after sowing seeds of seablite Suaeda salsa onto bare prepared plots, seablite was present. Seeds were sown May. In October, sown plots contained 292–532 seablite plants/m2, with an above-ground biomass of 396–771 g/m2. Seablite plants were 59–63 cm tall, on average. Variation in density and biomass were related to the method used to prepare plots for sowing (see Actions: Add inorganic fertilizer before/after planting and Add below-ground organic matter before/after planting). Methods: In May 2009, three pairs of 6-m2 plots were established in a degraded, unvegetated, hypersaline/alkaline wetland in the Yellow River estuary. Approximately 5,000 seablite seeds were sown onto each plot, then watered. Three plots had been prepared by ploughing (to 20 cm depth), three by ploughing and mixing in urea (130 kg N/ha), and three by ploughing and mixing in reed debris (2 kg/m2). Vegetation was sampled in five 1-m2 quadrats/plot until October 2009. Biomass measurements involved samples of approximately 100 plants/plot. Details of height measurements were not reported.

    (Summarised by: Nigel Taylor)

  3. Add inorganic fertilizer before/after planting non-woody plants: brackish/saline wetlands

    A replicated, controlled, before-and-after study in an estuarine wetland in eastern China (Guan et al. 2011) found that adding urea before sowing seeds of seablite Suaeda salsa increased seablite biomass, but had no significant effect on its density or height. Five months after sowing, fertilized plots contained a greater above-ground biomass of seablite (640 g/m2) than unfertilized plots (396 g/m2). Meanwhile, there was no significant difference between treatments in seablite density (fertilized: 292 plants/m2; unfertilized: 365 plants/m2) or height (fertilized: 59 cm; unfertilized: 59 cm). Height was also statistically similar under both treatments for measurements taken 1–4 months after sowing (fertilized: 12–47 cm; unfertilized: 12–51 cm). Methods: In May 2009, three pairs of 6-m2 plots were established in a degraded, unvegetated, hypersaline/alkaline wetland in the Yellow River estuary. Three plots were prepared by ploughing (to 20 cm depth) and mixing in urea (130 kg N/ha). The other three plots had been prepared by ploughing only. Approximately 5,000 seablite seeds were sown onto each plot, then watered. Vegetation was sampled in five 1-m2 quadrats/plot until October 2009. Biomass measurements involved samples of approximately 100 plants/plot.

    (Summarised by: Nigel Taylor)

Output references
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 18

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape Programme Red List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Bern wood Supporting Conservation Leaders National Biodiversity Network Sustainability Dashboard Frog Life The international journey of Conservation - Oryx British trust for ornithology Cool Farm Alliance UNEP AWFA Butterfly Conservation People trust for endangered species Vincet Wildlife Trust