Study

Can artificial ecosystems enhance local biodiversity? The case of a constructed wetland in a Mediterranean urban context

  • Published source details De Martis G., Mulas B., Malavasi V. & Marignani M. (2016) Can artificial ecosystems enhance local biodiversity? The case of a constructed wetland in a Mediterranean urban context. Environmental Management, 57, 1088-1097

Actions

This study is summarised as evidence for the following.

Action Category

Reprofile/relandscape: brackish/salt marshes

Action Link
Marsh and Swamp Conservation

Reprofile/relandscape: freshwater marshes

Action Link
Marsh and Swamp Conservation

Directly plant non-woody plants: freshwater wetlands

Action Link
Marsh and Swamp Conservation

Directly plant non-woody plants: brackish/saline wetlands

Action Link
Marsh and Swamp Conservation
  1. Reprofile/relandscape: brackish/salt marshes

    A study in 2005–2013 of an excavated, planted and harvested water treatment marsh in Sardinia, Italy (De Martis et al. 2016) reported that it supported 275 plant taxa. This included 201 plant species in 161 genera. Approximately 63% of the taxa were Mediterranean (found predominantly or solely in this region) and approximately 16% were known non-natives in Italy. As expected in the study area, 56% of the taxa were annual plants that complete their life cycle rapidly in favourable conditions (“thereophytes”). Only 2% of taxa had underwater resting buds (“hydrophytes”). Methods: Between 2005 and 2013, plant taxa were recorded in the 37-ha EcoSistema Filtro marsh, which had been constructed with the dual aims of habitat creation and water treatment. There were monthly surveys (a) across the whole site, including banks and upland areas, and (b) in three 16-m2 plots, each April–July and September–December. The wetland had been constructed by excavating basins of varying salinity and levees (including removal of all existing vegetation; beginning 1990) and planting bundles of 2-m-tall common reed Phragmites australis (2004). Some “plant biomass” was mechanically removed between 2005 and 2007. Note that this study evaluates the combined effect of these interventions, and does not separate results from fresh, brackish and saline areas.

    (Summarised by: Nigel Taylor)

  2. Reprofile/relandscape: freshwater marshes

    A study in 2005–2013 of an excavated, planted and harvested water treatment marsh in Sardinia, Italy (De Martis et al. 2016) reported that it supported 275 plant taxa. This included 201 plant species in 161 genera. Approximately 63% of the taxa were Mediterranean (found predominantly or solely in this region) and approximately 16% were known non-natives in Italy. As expected in the study area, 56% of the taxa were annual plants that complete their life cycle rapidly in favourable conditions (“thereophytes”). Only 2% of taxa had underwater resting buds (“hydrophytes”). Methods: Between 2005 and 2013, plant taxa were recorded in the 37-ha EcoSistema Filtro marsh, which had been constructed with the dual aims of habitat creation and water treatment. There were monthly surveys (a) across the whole site, including banks and upland areas, and (b) in three 16-m2 plots, each April–July and September–December. The wetland had been constructed by excavating basins of varying salinity and levees (including removal of all existing vegetation; beginning 1990) and planting bundles of 2-m-tall common reed Phragmites australis (2004). Some “plant biomass” was mechanically removed between 2005 and 2007. Note that this study evaluates the combined effect of these interventions, and does not separate results from fresh, brackish and saline areas.

    (Summarised by: Nigel Taylor)

  3. Directly plant non-woody plants: freshwater wetlands

    A study in 2005–2013 of an excavated, planted and harvested water treatment marsh in Sardinia, Italy (De Martis et al. 2016) reported that it supported 275 plant taxa. This included 201 plant species in 161 genera. Approximately 63% of the taxa were Mediterranean (found predominantly or solely in this region) and approximately 16% were known non-natives in Italy. As expected in the study area, 56% of the taxa were annual plants that complete their life cycle rapidly in favourable conditions (“thereophytes”). Only 2% of taxa had underwater resting buds (“hydrophytes”). Methods: Between 2005 and 2013, plant taxa were recorded in the 37-ha EcoSistema Filtro marsh, which had been constructed with the dual aims of habitat creation and water treatment. There were monthly surveys (a) across the whole site, including banks and upland areas, and (b) in three 16-m2 plots, each April–July and September–December. The wetland had been constructed by excavating basins of varying salinity and levees (including removal of all existing vegetation; beginning 1990) and planting bundles of 2-m-tall common reed Phragmites australis (2004). Some “plant biomass” was mechanically removed between 2005 and 2007. Note that this study evaluates the combined effect of these interventions, and does not separate results from fresh, brackish and saline areas.

    (Summarised by: Nigel Taylor)

  4. Directly plant non-woody plants: brackish/saline wetlands

    A study in 2005–2013 of an excavated, planted and harvested water treatment marsh in Sardinia, Italy (De Martis et al. 2016) reported that it supported 275 plant taxa. This included 201 plant species in 161 genera. Approximately 63% of the taxa were Mediterranean (found predominantly or solely in this region) and approximately 16% were known non-natives in Italy. As expected in the study area, 56% of the taxa were annual plants that complete their life cycle rapidly in favourable conditions (“thereophytes”). Only 2% of taxa had underwater resting buds (“hydrophytes”). Methods: Between 2005 and 2013, plant taxa were recorded in the 37-ha EcoSistema Filtro marsh, which had been constructed with the dual aims of habitat creation and water treatment. There were monthly surveys (a) across the whole site, including banks and upland areas, and (b) in three 16-m2 plots, each April–July and September–December. The wetland had been constructed by excavating basins of varying salinity and levees (including removal of all existing vegetation; beginning 1990) and planting bundles of 2-m-tall common reed Phragmites australis (2004). Some “plant biomass” was mechanically removed between 2005 and 2007. Note that this study evaluates the combined effect of these interventions, and does not separate results from fresh, brackish and saline areas.

    (Summarised by: Nigel Taylor)

Output references

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 18

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape Programme Red List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Bern wood Supporting Conservation Leaders National Biodiversity Network Sustainability Dashboard Frog Life The international journey of Conservation - Oryx British trust for ornithology Cool Farm Alliance UNEP AWFA Butterfly Conservation People trust for endangered species Vincet Wildlife Trust