Study

Top-down trophic shifts in Florida Keys patch reef marine protected areas

  • Published source details Kramer K.L. & Heck Jr. K.L. (2007) Top-down trophic shifts in Florida Keys patch reef marine protected areas. Marine Ecology Progress Series, 349, 111-123.

Actions

This study is summarised as evidence for the following.

Action Category

Cease or prohibit all types of fishing in a marine protected area

Action Link
Marine Fish Conservation
  1. Cease or prohibit all types of fishing in a marine protected area

    A replicated, site comparison study in 2004 of five coral reef sites in the Florida Keys, Atlantic Ocean, USA (Kramer & Heck 2007) found that prohibiting all fishing within marine protected areas (no-take) for 6 years resulted in higher biomass, body length and abundance of some reef fish species and sizes, but not others, compared to unprotected fished reefs. The average biomass of one of two species of groupers Serranidae spp. and one of three snappers Lutjanidae spp. was higher inside (grouper: 1,190; snapper: 910 g/125 m2) than outside no-take areas (grouper: 130; snapper: 30 g/125 m2), but was similar for the others (inside: 590–2,400, outside: 100–2,500 g/125 m2; see paper for individual data). Average body lengths of two of the three snappers were greater in no-take areas, while no differences were found for the other snapper and the only grouper for which there was sufficient data (data reported as statistical results). For three groups of herbivorous fish (see original paper for species), adult sizes of two were more abundant in no-take areas (inside: 0.30–0.98, outside: 0.13–0.74 m2) and abundances of immature sizes were lower (inside: 0.04–0.60; outside: 0.12–1.50 fish/m2), while abundance of the other species was similar for both adults and immature fish (inside: 0.05–0.30, outside: 0.03–0.10 fish/m2). Patch reefs were sampled in three Special Protected Areas (average 0.5 km2, established 1997, no resource extraction) and at two fished reefs (1 to 3 km apart). Predatory and herbivorous fish were recorded along three 25 × 5 m and 20 × 1 m belt transects, respectively. Predatory fish were surveyed on 5-6 days in June-September 2004 and herbivorous fish on 7–9 days in June-September 2003 and 2004.

    (Summarised by: Leo Clarke)

Output references
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust