Conservation Evidence strives to be as useful to conservationists as possible. Please take our survey to help the team improve our resource.

Providing evidence to improve practice

Individual study: Two unsuccessful reintroduction attempts of rock hyraxes (Procavia capensis) into a reserve in the KwaZulu-Natal Province, South Africa

Published source details

Wimberger K., Downs C.T. & Perrin M.R. (2009) Two unsuccessful reintroduction attempts of rock hyraxes (Procavia capensis) into a reserve in the KwaZulu-Natal Province, South Africa. South African Journal of Wildlife Research, 39, 192-201


This study is summarised as evidence for the intervention(s) shown on the right. The icon shows which synopsis it is relevant to.

Release translocated/captive-bred mammals into area with artificial refuges/breeding sites Terrestrial Mammal Conservation

A study in 2005–2006 at rocky outcrops on a reserve in KwaZulu-Natal Province, South Africa (Wimberger et al. 2009) found that translocated rock hyraxes Procavia capensis that were provided with an artificial refuge and food after release in a social group, having been held in captivity, all died (or were presumed to have died) within 87 days of release. Eighty-seven days after the release of 17 hyraxes, none could be relocated. In July 2005, ten adult hyraxes were caught in baited mammal traps (900 × 310 × 320 mm) in an area where they were abundant, and held in captivity for 16 months, during which time three died. The remaining seven were released in November 2006, along with the eight juveniles and two pups born to them in captivity, to a 656-ha reserve where the species was nearly extinct. For four months prior to release, the group was housed together in an outdoor cage (5.9 × 2.5 × 3.2 m). Hyraxes were released into a hay-filled hutch which was left in place for several months, and were provided with cabbage for one week after release. Hyraxes were monitored by direct observations and by walking regular transects, daily for the first week but decreasing to monthly by the end of the study.

(Summarised by Nick Littlewood)

Provide supplementary food during/after release of translocated mammals Terrestrial Mammal Conservation

A study in 2005–2006 at rocky outcrops on a reserve in KwaZulu-Natal Province, South Africa (Wimberger et al. 2009) found that translocated rock hyraxes Procavia capensis that were provided with food and an artificial refuge after release in a social group, having been held in captivity, all died (or were presumed to have died) within 87 days of release. Eighty-seven days after the release of 17 hyraxes, none could be relocated. In July 2005, ten adult hyraxes were caught in baited mammal traps (900 × 310 × 320 mm) in an area where they were abundant, and held in captivity for 16 months, during which time three died. The remaining seven were released in November 2006, along with the eight juveniles and two pups born to them in captivity, to a 656-ha reserve where the species was nearly extinct. For four months prior to release, the group was housed together in an outdoor cage (5.9 × 2.5 × 3.2 m). Hyraxes were released into a hay-filled hutch which was left in place for several months, and were provided with cabbage for one week after release. Hyraxes were monitored by direct observations and by walking regular transects, daily for the first week but decreasing to monthly by the end of the study.

(Summarised by Nick Littlewood)

Hold translocated mammals in captivity before release Terrestrial Mammal Conservation

A study in 2005–2006 at rocky outcrops on a reserve in KwaZulu-Natal Province, South Africa (Wimberger et al. 2009) found that translocated rock hyraxes Procavia capensis that were held in captivity before release in a social group, and provided with an artificial refuge and supplementary food after release, all died (or were presumed to have died) within 87 days of release. Eighty-seven days after the release of 17 hyraxes, none could be relocated. In July 2005, ten adult hyraxes were caught in baited mammal traps (900 × 310 × 320 mm), and held in captivity for 16 months, during which time three died. The remaining seven were released in November 2006, along with the eight juveniles and two pups born to them in captivity, to a 656-ha reserve where the species was nearly extinct. For four months prior to release, the group was housed together in an outdoor cage (5.9 × 2.5 × 3.2 m). Hyraxes were released into a hay-filled hutch which was left in place for several months, and were provided with cabbage for one week after release. Hyraxes were monitored by direct observations and by walking regular transects, daily for the first week decreasing to monthly by the end of the study.

(Summarised by Nick Littlewood)

Release translocated/captive-bred mammals in family/social groups Terrestrial Mammal Conservation

A study in 2007 at rocky outcrops on a reserve in KwaZulu-Natal Province, South Africa (Wimberger et al. 2009a) found that all translocated rock hyraxes Procavia capensis that were released as a group, having been kept in a holding pen, died (or were presumed to have died) within 18 days of release. Eight of nine wild translocated hyraxes died within 18 days of release and the other was presumed to have died. The group split up and were not seen together after release. In October 2007, nine hyraxes (one juvenile, three sub-adults and five adults) were caught in baited mammal traps (90 × 31 × 32 cm) in an area where they were abundant, and moved 150 km to a 656-ha reserve where the species was nearly extinct. Hyraxes were kept together in a holding cage (185 × 185 × 185 cm) for 14 days before release. They were monitored daily for one week, and then every few days by direct observation and radio-tracking.

(Summarised by Nick Littlewood)

Release translocated/captive-bred mammals in family/social groups Terrestrial Mammal Conservation

A study in 2005–2006 at rocky outcrops on a reserve in KwaZulu-Natal Province, South Africa (Wimberger et al. 2009b) found that translocated rock hyraxes Procavia capensis that were released in a social group after being held in captivity, and were provided with an artificial refuge and supplementary food after release, all died (or were presumed to have died) within 87 days of release. Eighty-seven days after the release of 17 hyraxes, none could be relocated. In July 2005, ten adult hyraxes were caught in baited mammal traps (90 × 31 × 32 cm) in an area where they were abundant, and held in captivity for 16 months, during which time three died. The remaining seven were released in November 2006, along with the eight juveniles and two pups born to them in captivity, to a 656-ha reserve where the species was nearly extinct. For four months prior to release, the group was housed together in an outdoor cage (5.9 × 2.5 × 3.2 m). Hyraxes were released into a hay-filled hutch which was left in place for several months, and were provided with cabbage for one week after release. Hyraxes were monitored by direct observations and by walking regular transects, daily for the first week but decreasing to monthly by the end of the study.

(Summarised by Nick Littlewood)

Use holding pens at release site prior to release of translocated mammals Terrestrial Mammal Conservation

A study in 2007 at rocky outcrops on a reserve in KwaZulu-Natal Province, South Africa (Wimberger et al. 2009) found that all translocated rock hyraxes Procavia capensis kept in a holding pen and released as a group died (or were presumed to have died) within 18 days of release. Eight of nine wild translocated hyraxes died within 18 days of release and the other was presumed to have died. The group split up and were not seen together after release. In October 2007, nine hyraxes (one juvenile, three sub-adults and five adults) were caught in baited mammal traps (900 × 310 × 320 mm) in an area where they were abundant, and moved 150 km to a 656-ha reserve where the species was nearly extinct. Hyraxes were kept together in a holding cage (1850 × 1,850 × 1850 mm) for 14 days before release. They were monitored daily for one week, and then every few days by direct observation and radio-tracking.

(Summarised by Nick Littlewood)