Study

Survivorship of translocated kangaroo rats in the San Joaquin Valley, California

  • Published source details Germano D.J. (2010) Survivorship of translocated kangaroo rats in the San Joaquin Valley, California. California Fish and Game, 96, 82-89.

Actions

This study is summarised as evidence for the following.

Action Category

Release translocated/captive-bred mammals at a specific time (e.g. season, day/night)

Action Link
Terrestrial Mammal Conservation

Release translocated/captive-bred mammals into area with artificial refuges/breeding sites

Action Link
Terrestrial Mammal Conservation

Hold translocated mammals in captivity before release

Action Link
Terrestrial Mammal Conservation

Provide supplementary food during/after release of translocated mammals

Action Link
Terrestrial Mammal Conservation
  1. Release translocated/captive-bred mammals at a specific time (e.g. season, day/night)

    A study in 2001 in a grassland and shrubland site in California, USA (Germano 2010) found that most translocated Tipton kangaroo rats Dipodomys nitratoides nitratoides and Heermann’s kangaroo rats Dipodomys heermanni ssp. released at dusk in artificial burrows supplied with food died within five days of release. All four Tipton kangaroo rats were predated within five days of translocation, and only one out of seven Heermann’s kangaroo rats survived over 45 days. Three Heermann’s kangaroo rats were predated, two died as a result of aggression from other kangaroo rats, and the fate of one was unknown. In September 2001, four juvenile Tipton kangaroo rats and three Heermann’s kangaroo rats were captured and held in captivity for two months before release at a protected site in November. In December 2001, a further four Heermann’s kangaroo rats were caught and translocated to the same site. All 11 animals were fitted with a radio-transmitter and ear tags, and monitored for seven days in captivity prior to release. The release site was already occupied by Heermann’s kangaroo rats. Animals were released into individual artificial burrows (two 90-cm-long cardboard tubes with a chamber about 30 cm below the surface), dug 10–15 m apart and provided with a paper towel and seeds. Burrows were plugged with paper towels until dusk. Animals were radio-tracked every 1–8 days for 18–45 days after release.

    (Summarised by: Ricardo Rocha)

  2. Release translocated/captive-bred mammals into area with artificial refuges/breeding sites

    A study in 2001 in a grassland and shrubland site in California, USA (Germano 2010) found that most Tipton kangaroo rats Dipodomys nitratoides nitratoides and Heermann’s kangaroo rats Dipodomys heermanni ssp. translocated into artificial burrows provided with supplementary food died within five days of release. All four Tipton kangaroo rats were predated within five days of translocation, and only one out of seven Heermann’s kangaroo rats survived over 45 days. Three Heermann’s kangaroo rats were predated, two died as a result of aggression from other Heermann’s kangaroo rats, and the fate of one was unknown. In September 2001, four juvenile Tipton kangaroo rats and three Heermann’s kangaroo rats were captured and held in captivity for two months before release at a protected site in November. In December 2001, a further four Heermann’s kangaroo rats were caught and translocated to the same site. All 11 animals were fitted with a radio-transmitter and ear tags, and monitored for seven days in captivity prior to release. The release site was already occupied by Heermann’s kangaroo rats. Animals were released into individual artificial burrows (two 90-cm-long cardboard tubes with a chamber about 30 cm below the surface), dug 10–15 m apart and provided with seeds. Burrows were plugged with paper towels until dusk. Animals were radio-tracked every 1–8 days for 18–45 days after release.

    (Summarised by: Ricardo Rocha)

  3. Hold translocated mammals in captivity before release

    A study in 2001 in a grassland and shrubland site in California, USA (Germano 2010) found that most translocated Tipton kangaroo rats Dipodomys nitratoides nitratoides and Heermann’s kangaroo rats Dipodomys heermanni ssp. that were held in captivity prior to release died within five days of release. All four Tipton kangaroo rats were predated within five days of translocation, and only one of seven Heermann’s kangaroo rats survived over 45 days. Three Heermann’s kangaroo rats were predated, two died as a result of aggression from other Heermann’s kangaroo rats, and the fate of one was unknown. In September 2001, four juvenile Tipton kangaroo rats and three Heermann’s kangaroo rats were captured and held in captivity for two months before release at a protected site in November. In December 2001, a further four Heermann’s kangaroo rats were caught and translocated to the same site. All 11 animals were fitted with a radio-transmitter and ear tags, and monitored for seven days in captivity prior to release. The release site was already occupied by Heermann’s kangaroo rats. Animals were released into individual artificial burrows (two 90-cm-long cardboard tubes with a chamber about 30 cm below the surface), dug 10–15 m apart and provided with seeds. Burrows were plugged with paper towels until dusk. Animals were radio-tracked every 1–8 days for 18–45 days after release.

    (Summarised by: Ricardo Rocha)

  4. Provide supplementary food during/after release of translocated mammals

    A study in 2001 in a grassland and shrubland site in California, USA (Germano 2010) found that most translocated Tipton kangaroo rats Dipodomys nitratoides nitratoides and Heermann’s kangaroo rats Dipodomys heermanni ssp. provided with supplementary food within artificial burrows after release died within five days of release. All four Tipton kangaroo rats were predated within five days of translocation, and only one out of seven Heermann’s kangaroo rats survived over 45 days. Three Heermann’s kangaroo rats were predated, two died as a result of aggression from other Heermann’s kangaroo rats, and the fate of one was unknown. In September 2001, four juvenile Tipton kangaroo rats and three Heermann’s kangaroo rats were captured and held in captivity for two months before release at a protected site in November. In December 2001, a further four Heermann’s kangaroo rats were caught and translocated to the same site. All 11 animals were fitted with a radio-transmitter and ear tags, and monitored for seven days in captivity prior to release. The release site was already occupied by Heermann’s kangaroo rats. Animals were released into individual artificial burrows (two 90-cm-long cardboard tubes with a chamber about 30 cm below the surface), dug 10–15 m apart and provided with seeds. Burrows were plugged with paper towels until dusk. Animals were radio-tracked every 1–8 days for 18–45 days after release.

    (Summarised by: Ricardo Rocha)

Output references
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust