Conservation Evidence strives to be as useful to conservationists as possible. Please take our survey to help the team improve our resource.

Providing evidence to improve practice

Individual study: An experimental study of translocation success and habitat improvement in wild rabbits

Published source details

Cabezas S. & Moreno S. (2007) An experimental study of translocation success and habitat improvement in wild rabbits. Animal Conservation, 10, 340-348


This study is summarised as evidence for the intervention(s) shown on the right. The icon shows which synopsis it is relevant to.

Release translocated/captive-bred mammals into area with artificial refuges/breeding sites Terrestrial Mammal Conservation

A controlled study in 1999–2002 in a shrubland site in Huelva, Spain (Cabezas & Moreno 2007) found that providing artificial warrens to translocated European rabbits Oryctolagus cuniculus did not increase their abundance relative to those translocated without provision of artificial warrens. Over the three-year study, average rabbit pellet density in translocation plots where warrens were provided (4.4 pellets/m2) was not significantly different to that in plots where warrens were not provided (5.0 pellets/m2). The study was conducted in four 4-ha square plots (1–6 km apart) in Doñana National Park. Eight artificial warrens, with internal galleries and multiple entrances, were built in each of two plots. Two batches of rabbits, each totalling 64–67 animals, were translocated into each of two plots (one with and one without warrens) each winter from 1999–2000 to 2001–2002. Translocation plots were switched after the first winter, such that translocations in the second and third winter were into plots where no translocations were made in the first winter. Between September 1999 and November 2002, rabbit abundance was estimated every two months by counting the number of pellets in 33 fixed-position 0.5-m diameter sampling points/plot. Wild rabbits were present in all plots prior to translocations beginning.

(Summarised by Ricardo Rocha)

Provide supplementary food during/after release of translocated mammals Terrestrial Mammal Conservation

A controlled study in 1999–2002 in a shrubland site in Huelva, Spain (Cabezas & Moreno 2007) found that providing supplementary food during translocation of European rabbits Oryctolagus cuniculus did not increase their abundance relative to unfed translocated rabbits. Over three years, the average rabbit abundance in translocation plots where food was provided (8.9 pellets/m2) was not significantly different than in plots where translocated rabbits were not fed (5.0 pellets/m2). The study was conducted in four 4-ha plots (1–6 km apart). Each year, in autumn, herbaceous crops (barley Hordeum vulgare and oats Avena sativa) were sown in two plots to provide supplementary feeding. Batches of 64–67 rabbits were translocated into each of two plots (one with and one without supplementary food) each winter from 1999–2000 to 2001–2002. Translocation plots were switched after the first year, such that translocations in the second and third year were into plots where no translocations were made in the first year. Between September 1999 and November 2002, rabbit abundance was estimated every two months by counting the number of pellets in 33 fixed-position 0.5-m diameter sampling points/plot. Wild rabbits were present in all plots prior to translocations beginning.

(Summarised by Ricardo Rocha)

Translocate to re-establish or boost populations in native range Terrestrial Mammal Conservation

A controlled study in 1999–2002 in a shrubland site in Huelva, Spain (Cabezas & Moreno 2007) found that translocation of European rabbits Oryctolagus cuniculus increased rabbit abundance. Average rabbit abundance over the study was higher in translocation plots (5.0 pellets/m2) than in non-translocation plots (1.9 pellets/m2). The study was conducted in two 4-ha plots (≥1 km apart) in Doñana National Park. Annually, over three years, two batches of 32–34 rabbits were translocated into one plot and no translocations occurred in the other plot. The first two batches were translocated in November 1999 and February 2000. Plots were then switched such that the second and third pairs of translocations (December 2000 and February 2001, and January and March 2002) were released into what was the non-translocation plot for the first batch. Between September 1999 and November 2002, rabbit abundance was estimated every two months by counting the number of pellets in 33 fixed‐position 0.5-m diameter sampling points/plot. Wild rabbits were present in all plots prior to translocations beginning.

(Summarised by Ricardo Rocha)