Conservation Evidence strives to be as useful to conservationists as possible. Please take our survey to help the team improve our resource.

Providing evidence to improve practice

Individual study: Transplantation as a conservation action to protect the Mediterranean fan mussel Pinna nobilis

Published source details

Katsanevakis S. (2016) Transplantation as a conservation action to protect the Mediterranean fan mussel Pinna nobilis. Marine Ecology Progress Series, 546, 113-122


This study is summarised as evidence for the intervention(s) shown on the right. The icon shows which synopsis it is relevant to.

Translocate species - Translocate molluscs Subtidal Benthic Invertebrate Conservation

A study in 2006 of two sites of unspecified seabed in Lake Vouliagmeni, Gulf of Corinth, Greece (Katsanevakis 2016a) found that up to a year after translocation, most Mediterranean fan mussels Pinna nobilis survived in a deep site, but none in a shallow site. In the shallow site, all mussels were dead after 72 days, mostly due to poaching (90%). In the deep site 80% of mussels survived, 100% of mussel death was natural, and 75% of dead mussels were small (<6 cm). No statistical tests were performed. During a pilot study in July 2006, forty mussels were manually uprooted from a shallow area of the lake (4 m depth), their shell width measured, and translocated equally back to that same area or a deeper area (12 m). Translocated mussels in both areas were 1 m apart. Mussel survival was monitored by divers and mortality classed as “poaching” or “natural”, after 12 days, 72 days, and one year.

 

A study in 2007–2012 in one area of unspecified seabed in Lake Vouliagmeni, Gulf of Corinth, Greece (Katsanevakis 2016b) found that translocated Mediterranean fan mussels Pinna nobilis had similar survival and growth rate compared to naturally-occurring mussels. After five years, the survival of translocated mussels (96%) was similar to that of naturally-occurring mussels (95%). Size-specific growth was similar in translocated (smallest: 39%; largest: 1.5%) and naturally-occurring mussels (smallest: 47%; largest: 0%). Data for other size-classes were not provided. In 2007, forty-five mussels were manually uprooted from a shallow area of the lake (4 m depth) and translocated to a deeper area (12 m depth) in five groups (20 m apart) of 9 mussels (0.5 m apart). Yearly for five years, translocated mussels’ survival was monitored by divers and mortality classed as “poaching” or “natural”. Their shell width was measured, and mussels categorised in one of six size-classes. Twenty naturally-occurring mussels occurring at 12 m depth were also monitored.

(Summarised by Anaëlle Lemasson)