Study

Reduced tillage as an alternative to no-tillage under Mediterranean conditions: A case study

  • Published source details López-Garrido R., Madejón E., León-Camacho M., Girón I., Moreno F. & Murillo J.M. (2014) Reduced tillage as an alternative to no-tillage under Mediterranean conditions: A case study. Soil & Tillage Research, 140, 40-47.

Actions

This study is summarised as evidence for the following.

Action Category

Water: Use no tillage instead of reduced tillage

Action Link
Mediterranean Farmland

Water: Use no tillage in arable fields

Action Link
Mediterranean Farmland

Crop production: Use no tillage instead of reduced tillage

Action Link
Mediterranean Farmland

Water: Use reduced tillage in arable fields

Action Link
Mediterranean Farmland

Soil: Use no tillage instead of reduced tillage

Action Link
Mediterranean Farmland

Crop production: Use no tillage in arable fields

Action Link
Mediterranean Farmland

Crop production: Use reduced tillage in arable fields

Action Link
Mediterranean Farmland

Soil: Use no tillage in arable fields

Action Link
Mediterranean Farmland

Soil: Use reduced tillage in arable fields

Action Link
Mediterranean Farmland
  1. Water: Use no tillage instead of reduced tillage

    A replicated, randomized, controlled study in 2008–2013 in a rainfed wheat-sunflower-pea field near Seville, Spain, found more water in soils with no tillage, compared to reduced tillage. Water availability: More water was found in soils with no tillage, compared to reduced tillage, in one of three comparisons (0–5 cm depth, in early May 2013: 19.1% vs 9.15% soil moisture). Methods: No tillage or reduced tillage was used on three plots each (6 x 33.5 m plots). A chisel plough (25 cm depth), a disc harrow (5 cm depth), and herbicide were used for reduced tillage. A seed drill and herbicide were used for no tillage. Wheat, sunflowers, and peas were grown in rotation. Wheat was fertilized, but sunflowers and peas were not. Soil moisture was measured in May 2013 (0–5 cm depth, time-domain-reflectrometry probes) and early June (0–10 cm depth, gravimetric).

     

  2. Water: Use no tillage in arable fields

    A replicated, randomized, controlled study in 2008–2013 in a rainfed wheat-sunflower-pea field near Seville, Spain, found more water in soils with no tillage, compared to conventional tillage, in one of three comparisons. Water availability: More water was found in soils with no tillage, compared to conventional tillage, in one of three comparisons (0–5 cm depth, in early May 2013: 19.1 vs 7.42% soil moisture). Methods: No tillage or conventional tillage was used on three plots each (6 x 33.5 m plots). A mouldboard plough (25–30 cm depth), a chisel plough (25 cm depth, twice/year), and a disk harrow (12 cm depth) were used for conventional tillage. A seed drill and herbicide were used for no tillage. Wheat, sunflowers, and peas were grown in rotation. Wheat was fertilized, but sunflowers and peas were not. Soil moisture was measured in May 2013 (0–5 cm depth, time-domain-reflectrometry probes) and early June (0–10 cm depth, gravimetric).

     

  3. Crop production: Use no tillage instead of reduced tillage

    A replicated, randomized, controlled study in 2008–2013 in a rainfed wheat-sunflower-pea field near Seville, Spain, found lower crop yields and differences in crop quality in plots with no tillage, compared to reduced tillage, in some comparisons. Crop yield: Lower crop yields were found in plots with no tillage, compared to reduced tillage, in two of five comparisons (sunflower seeds in 2013: 105 vs 3,839 kg/ha; wheat grain in 2012: 2,940 vs 3,985 kg/ha). Crop quality: Less oil, more zinc, more saturated and polyunsaturated fatty acid, and less monounsaturated fatty acid were found in sunflower seeds in plots with no tillage, compared to reduced tillage (34% vs 50% oil; see publication for other results). Methods: No tillage or reduced tillage was used on three plots each (6 x 33.5 m plots). A chisel plough (25 cm depth), a disc harrow (5 cm depth), and herbicide were used for reduced tillage. A seed drill and herbicide were used for no tillage. Wheat, sunflowers, and peas were grown in rotation. Wheat was fertilized, but sunflowers and peas were not. Sunflowers were sown in May 2013 (three months later than usual) and harvested in September. Yield and quality were measured in 16 sunflower heads/plot.

     

  4. Water: Use reduced tillage in arable fields

    A replicated, randomized, controlled study in 2008–2013 in a rainfed wheat-sunflower-pea field near Seville, Spain, found similar amounts of water in soils with reduced tillage or conventional tillage. Water availability: Similar amounts of water were found in soils with reduced tillage or conventional tillage (7.23–13.4 vs 7.11–14.0% soil moisture). Methods: Reduced tillage or conventional tillage was used on three plots each (6 x 33.5 m plots). A mouldboard plough (25–30 cm depth), a chisel plough (25 cm depth, twice/year), and a disc harrow (12 cm depth) were used for conventional tillage. A chisel plough (25 cm depth, once/year), a disc harrow (5 cm depth), and herbicide were used for reduced tillage. Wheat, sunflowers, and peas were grown in rotation. Wheat was fertilized, but sunflowers and peas were not. Soil moisture was measured in May 2013 (0–5 cm depth, time-domain-reflectrometry probes) and early June (0–10 cm depth, gravimetric).

     

  5. Soil: Use no tillage instead of reduced tillage

    A replicated, randomized, controlled study in 2008–2013 in a rainfed wheat-sunflower-pea field near Seville, Spain, found more organic matter (in one of three comparisons), but found similar amounts of nutrients, in soils with no tillage, compared to reduced tillage. Organic matter: More organic carbon was found in soils with no tillage, compared to reduced tillage, at one of three depths (0–5 cm: 11 vs 9 g C/kg soil). Nutrients: Similar amounts of nitrogen, phosphorus, and potassium were found in soils with no tillage or reduced tillage (0.76–1.06 vs 0.92–0.99 g N/kg soil; 14.5–25.6 vs 17.8–25.7 g phosphorus/kg soil; 290–508 vs 307–419 g potassium/kg soil). Methods: No tillage or reduced tillage was used on three plots each (6 x 33.5 m plots). A chisel plough (25 cm depth), a disc harrow (5 cm depth), and herbicide were used for reduced tillage. A seed drill and herbicide were used for no tillage. Wheat, sunflowers, and peas were grown in rotation. Wheat was fertilized, but sunflowers and peas were not. Soil samples were collected in October 2012 (0–25 cm depth).

     

  6. Crop production: Use no tillage in arable fields

    A replicated, randomized, controlled study in 2008–2013 in a rainfed wheat-sunflower-pea field near Seville, Spain, found lower crop yields, and differences in crop quality, in plots with no tillage, compared to conventional tillage. Crop yield: Lower crop yields were found in plots with no tillage, compared to conventional tillage, in two of five comparisons (sunflower seeds in 2013: 105 vs 3,520 kg/ha; wheat grain in 2012: 2,940 vs 3,860 kg/ha). Crop quality: Less oil, less of nine nutrients, more saturated and monounsaturated fatty acid, and less polyunsaturated fatty acid were found in sunflower seeds in plots with no tillage, compared to conventional tillage (34% vs 48% oil; see publication for other results). Methods: No tillage or conventional tillage was used on three plots each (6 x 33.5 m plots). A mouldboard plough (25–30 cm depth), a chisel plough (25 cm depth, twice/year), and a disk harrow (12 cm depth) were used for conventional tillage. A seed drill and herbicide were used for no tillage. Wheat, sunflowers, and peas were grown in rotation. Wheat was fertilized, but sunflowers and peas were not. Sunflowers were sown in May 2013 (three months later than usual) and harvested in September. Yield and quality were measured in 16 sunflower heads/plot.

     

  7. Crop production: Use reduced tillage in arable fields

    A replicated, randomized, controlled study in 2008–2013 in a rainfed wheat-sunflower-pea field near Seville, Spain, found similar crop yields, but differences in crop quality, in plots with reduced tillage, compared to conventional tillage. Crop yield: Similar crop yields were found in plots with reduced tillage or conventional tillage (data reported for multiple crops and years). Crop quality: More oil, more of five nutrients, more monounsaturated fatty acid, and less polyunsaturated fatty acid were found in sunflower seeds in plots with reduced tillage, compared to conventional tillage (49.6 vs 48.0% oil). Methods: Reduced tillage or conventional tillage was used on three plots each (6 x 33.5 m plots). A mouldboard plough (25–30 cm depth), a chisel plough (25 cm depth, twice/year), and a disc harrow (12 cm depth) were used for conventional tillage. A chisel plough (25 cm depth, once/year), a disc harrow (5 cm depth), and herbicide were used for reduced tillage. Wheat, sunflowers, and peas were grown in rotation. Wheat was fertilized, but sunflowers and peas were not. Sunflowers were sown in May 2013 (three months later than usual) and harvested in September. Yield and quality were measured in 16 sunflower heads/plot.

     

  8. Soil: Use no tillage in arable fields

    A replicated, randomized, controlled study in 2008–2013 in a rainfed wheat-sunflower-pea field near Seville, Spain, found more organic matter and more nitrogen in soils with no tillage, compared to conventional tillage, in some comparisons. Organic matter: More organic carbon was found in soils with no tillage, compared to conventional tillage, at one of three depths (0–5 cm: 11 vs 9 g C/kg soil). Nutrients: More nitrogen was found in soils with no tillage, compared to conventional tillage, at one of three depths (0–5 cm: 1.06 vs 0.91 g N/kg soil), but no differences were found in other nutrients (0–25 cm: 14.5–25.6 vs 22.2–26.1 g phosphorus/kg soil; 290–508 vs 367–428 g potassium/kg soil). Methods: No tillage or conventional tillage was used on three plots each (6 x 33.5 m plots). A mouldboard plough (25–30 cm depth), a chisel plough (25 cm depth, twice/year), and a disk harrow (12 cm depth) were used for conventional tillage. A seed drill and herbicide were used for no tillage. Wheat, sunflowers, and peas were grown in rotation. Wheat was fertilized, but sunflowers and peas were not. Soil samples were collected in October 2012 (0–25 cm depth).

     

  9. Soil: Use reduced tillage in arable fields

    A replicated, randomized, controlled study in 2008–2013 in a rainfed wheat-sunflower-pea field near Seville, Spain, found similar amounts of organic matter and nutrients in soils with reduced tillage or conventional tillage. Organic matter: Similar amounts of organic carbon were found in soils with reduced tillage or conventional tillage (9 g C/kg soil). Nutrients: Similar amounts of nitrogen, phosphorus, and potassium were found in soils with reduced tillage or conventional tillage (0.92–0.99 vs 0.91–0.97 g N/kg soil; 17.8–25.7 vs 22.2–26.1 g phosphorus/kg soil; 307–419 vs 367–428 g potassium/kg soil). Methods: Reduced tillage or conventional tillage was used on three plots each (6 x 33.5 m plots). A mouldboard plough (25–30 cm depth), a chisel plough (25 cm depth, twice/year), and a disc harrow (12 cm depth) were used for conventional tillage. A chisel plough (25 cm depth, once/year), a disc harrow (5 cm depth), and herbicide were used for reduced tillage. Wheat, sunflowers, and peas were grown in rotation. Wheat was fertilized, but sunflowers and peas were not. Soil samples were collected in October 2012 (0–25 cm depth).

     

Output references
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 18

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape Programme Red List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Bern wood Supporting Conservation Leaders National Biodiversity Network Sustainability Dashboard Frog Life The international journey of Conservation - Oryx British trust for ornithology Cool Farm Alliance UNEP AWFA Butterfly Conservation People trust for endangered species Vincet Wildlife Trust