Conservation Evidence strives to be as useful to conservationists as possible. Please take our survey to help the team improve our resource.

Providing evidence to improve practice

Individual study: Tillage and N fertilization: Effects on N dynamics and Barley yield under semiarid Mediterranean conditions

Published source details

Angás P., Lampurlanés J. & Cantero-Martínez C. (2006) Tillage and N fertilization: Effects on N dynamics and Barley yield under semiarid Mediterranean conditions. Soil & Tillage Research, 87, 59-71


This study is summarised as evidence for the intervention(s) shown on the right. The icon shows which synopsis it is relevant to.

Soil: Use no tillage instead of reduced tillage Mediterranean Farmland

A replicated, randomized, controlled study in 1996–1999 in three rainfed barley fields in the Ebro river valley, Spain (same study as (8,11,12)), found that tillage had inconsistent effects on nitrogen in soils. Nutrients: Less nitrogen was found in soils with no tillage, compared to reduced tillage, in one of nine comparisons (128 vs 176 kg/ha), but more nitrogen was found in one of nine comparisons (165 vs 125 kg/ha). Methods: No tillage or reduced tillage was used on 27 plots each (50 x 6 m plots). A cultivator (10–15 cm depth, 1–2 passes) was used for reduced tillage, in September. Herbicide was used for no tillage. Two-thirds of the plots were fertilized (50–75 or 100–150 kg N/ha). Barley was sown, with a seed drill, in October–November (month of harvest not reported). Soil samples were collected four times/year (0–50 cm in two of three fields, 0–100 cm in one field, two soil cores/plot).

 

Crop production: Use no tillage instead of reduced tillage Mediterranean Farmland

A replicated, randomized, controlled study in 1996–1999 in three rainfed barley fields in the Ebro river valley, Spain, found that tillage had inconsistent effects on crop yields. Crop yield: Higher grain yields were found in plots with no tillage, compared to reduced tillage, in one of nine comparisons (3,645 vs 2,507 kg/ha), but lower grain yields were found in two of nine comparisons (770–1,247 vs 1,043–1,749 kg/ha). Methods: No tillage or reduced tillage was used on 27 plots each (50 x 6 m plots). A cultivator (10–15 cm depth, 1–2 passes) was used for reduced tillage, in September. Herbicide was used for no tillage. Two-thirds of the plots were fertilized (50–75 or 100–150 kg N/ha). Barley was sown, with a seed drill, in October–November (month of harvest not reported).

 

Soil: Use reduced tillage in arable fields Mediterranean Farmland

A replicated, randomized, controlled study in 1996–1999 in three rainfed barley fields in the Ebro river valley, Spain (same study as (20,25,26,30)), found less nitrogen in soils with reduced tillage, compared to conventional tillage. Nutrients: Less nitrogen was found in soils with reduced tillage, compared to conventional tillage, in two of nine comparisons (125–176 vs 219–247 kg/ha). Methods: Reduced tillage or conventional tillage was used on 27 plots each (50 x 6 m plots). A mouldboard plough (25–30 cm depth) and a cultivator (15 cm depth, 1–2 passes) were used for conventional tillage, in August–September. A cultivator (10–15 cm depth, 1–2 passes) was used for reduced tillage, in September. Two-thirds of the plots were fertilized (50–75 or 100–150 kg N/ha). Barley was sown, with a seed drill, in October–November. Soil samples were collected four times/year (0–50 cm in two of three fields, 0–100 cm in one field, two soil cores/plot).

 

Crop production: Use reduced tillage in arable fields Mediterranean Farmland

A replicated, randomized, controlled study in 1996–1999 in three rainfed barley fields in the Ebro river valley, Spain (same study as (12-14,17)), found that tillage had inconsistent effects on crop yields. Crop yield: Higher barley yields were found in plots with reduced tillage, compared to conventional tillage, in one of nine comparisons (2,507 vs 1,557 kg grain/ha), but lower barley yields were found in one of nine comparisons (1,043 vs 1,672 kg grain/ha). Methods: Reduced tillage or conventional tillage was used on 27 plots each (50 x 6 m plots). A mouldboard plough (25–30 cm depth) and a cultivator (15 cm depth, 1–2 passes) were used for conventional tillage, in August–September. A cultivator (10–15 cm depth, 1–2 passes) was used for reduced tillage, in September. Two-thirds of the plots were fertilized (50–75 or 100–150 kg N/ha). Barley was sown, with a seed drill, in October–November.

 

Crop production: Use no tillage in arable fields Mediterranean Farmland

A replicated, randomized, controlled study in 1996–1999 in three rainfed barley fields in the Ebro river valley, Spain (same study as (11-13,15)), found that tillage had inconsistent effects on crop yield. Crop yield: Higher grain yields were found in plots with no tillage, compared to conventional tillage, in two of nine comparisons (3,645–5,420 vs 1,557–4,229 kg/ha), but lower grain yields were found in two of nine comparisons (770–1,247 vs 1,672–1,888 kg/ha). Methods: No tillage or conventional tillage was used on 27 plots each (50 x 6 m plots). A mouldboard plough (25–30 cm depth) and a cultivator (15 cm depth, 1–2 passes) were used for conventional tillage, in August–September. Herbicide was used for no tillage. Two-thirds of the plots were fertilized (50–75 or 100–150 kg N/ha). Barley was sown, with a seed drill, in October–November.

 

Soil: Use no tillage in arable fields Mediterranean Farmland

A replicated, randomized, controlled study in 1996–1999 in three rainfed barley fields in the Ebro river valley, Spain (same study as (17,23,24,26)), found less nitrogen in soils with no tillage, compared to conventional tillage. Nutrients: Less nitrogen was found in soils with no tillage, compared to conventional tillage, in three of nine comparisons (82–165 vs 104–247 kg/ha). Methods: No tillage or conventional tillage was used on 27 plots each (50 x 6 m plots). A mouldboard plough (25–30 cm depth) and a cultivator (15 cm depth, 1–2 passes) were used for conventional tillage, in August–September. Herbicide was used for no tillage. Two-thirds of the plots were fertilized (50–75 or 100–150 kg N/ha). Barley was sown, with a seed drill, in October–November. Soil samples were collected four times/year (0–50 cm in two of three fields, 0–100 cm in one field, two soil cores/plot).