Conservation Evidence strives to be as useful to conservationists as possible. Please take our survey to help the team improve our resource.

Providing evidence to improve practice

Individual study: Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil

Published source details

Barton L., Murphy D.V. & Butterbach-Bahl K. (2013) Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil. Agriculture, Ecosystems & Environment, 167, 23-32


This study is summarised as evidence for the intervention(s) shown on the right. The icon shows which synopsis it is relevant to.

Water: Use crop rotations Mediterranean Farmland

A replicated, randomized, controlled study in 2009–2010 in a rainfed wheat field in the Wongan Hills, Western Australia, found similar amounts of water in soils with a lupin-wheat sequence or a wheat-wheat sequence. Water availability: Similar amounts of water were found in soils with or without crop rotation (8.1–17% median water-filled pore space). Methods: Wheat or lupin Lupinus angustifolius was planted on six 150 m2 plots each, in June 2009. In June 2010, wheat was planted on all plots. Lime was added to half of the plots (3.5 t/ha). Different fertilizers were used on each crop (e.g., no nitrogen was used on lupin). No plots were tilled. Volumetric water content was measured with moisture probes (10 cm depth, in eight of 12 plots, every 30 minutes, for two years). Soil samples were collected every 7–14 days for two years (0–10 cm depth, eight samples/plot).

 

Crop production: Use crop rotations Mediterranean Farmland

A replicated, randomized, controlled study in 2009–2010 in a rainfed wheat field in the Wongan Hills, Western Australia, found similar wheat yields in plots preceded by lupins or wheat. Crop yield: In 2010, wheat yields were similar in plots preceded by lupins or wheat (1.4 t/ha). Methods: Wheat or lupin Lupinus angustifolius was planted on six 150 m2 plots each, in June 2009. In June 2010, wheat was planted on all plots. Lime was added to half of the plots (3.5 t/ha). Different fertilizers were used on each crop (e.g., no nitrogen was used on lupin). No plots were tilled.

 

Soil: Use crop rotations Mediterranean Farmland

A replicated, randomized, controlled study in 2009–2010 in a rainfed wheat field in the Wongan Hills, Western Australia, found that less nitrous oxide was emitted from, and more methane was absorbed by, soils with a lupin-wheat sequence, compared to a wheat-wheat sequence, over two years. Greenhouse gases: Less nitrous oxide was emitted from plots with a lupin-wheat sequence, compared to a wheat-wheat sequence, in one of two comparisons (without added lime: 100 vs 130 g N2O–N/ha, over two years). More methane was absorbed by plots with a lupin-wheat sequence, compared to a wheat-wheat sequence, in one of two comparisons (without added lime: 991 vs 601 g CH4-C/ha). Methods: Wheat or lupin Lupinus angustifolius was planted on six 150 m2 plots each, in June 2009. In June 2010, wheat was planted on all plots. Lime was added to half of the plots (3.5 t/ha). Different fertilizers were used on each crop (e.g., no nitrogen was used on lupin). No plots were tilled. Nitrous oxide and methane were measured with chambers (500 mm x 500 mm chambers, eight measurement/day/plot, for two years beginning in June 2009).