Conservation Evidence strives to be as useful to conservationists as possible. Please take our survey to help the team improve our resource.

Providing evidence to improve practice

Individual study: Effects of long-term straw management and fertilizer nitrogen additions on soil nitrogen supply and crop yields at two sites in eastern England

Published source details

Silgram M. & Chambers B.J. (2002) Effects of long-term straw management and fertilizer nitrogen additions on soil nitrogen supply and crop yields at two sites in eastern England. The Journal of Agricultural Science, 139, 115-127


This study is summarised as evidence for the intervention(s) shown on the right. The icon shows which synopsis it is relevant to.

Amend the soil with formulated chemical compounds Soil Fertility

A controlled, randomized, replicated experiment from 1984 to 1997 on loamy sand and sandy loam in the UK (Silgram and Chambers, 2002) found increased soil mineral nitrogen under increasing nitrogen fertilizer with 54, 60, 65 and 71 kg N/ha in soil receiving 0, 100, 150 and 200 kg N/ha respectively. Soil organic carbon was higher under 250 kg N/ha (14.91 g C/100g) compared to no fertilizer (0.91 g C/100g). There were three residue treatments at two sites: burned straw incorporated (into soil to 15 cm depth), chopped straw incorporated (15 cm depth), and chopped straw not incorporated. All treatments were mouldboard ploughed in autumn to 30 cm depth. Within each treatment were six nitrogen fertilizer treatments: 0-250 kg N/ha increasing by 50 kg a time (winter cereals: wheat Triticum aestivum, barley Hordeum vulgare, oats Avena sativa), 0-150 kg N/ha by 30 kg (spring cereals (barley) and sugar beet Beta vulgaris), and 0-300 kg N/ha by 60 kg (winter oilseed rape Brassica napus). Each nitrogen treatment was 64 m2 at Gleadthorpe and 69 m2 at Morley. Grain and straw samples were used to measure nitrogen content. Soils were samples to 90 cm depth.

Amend the soil with fresh plant material or crop remains Soil Fertility

A controlled, randomized, replicated experiment from 1984 to 1997 on loamy sand and sandy loam in the UK (Silgram and Chambers, 2002) found higher soil mineral nitrogen under burned incorporated straw (51 kg N/ha), then chopped incorporated straw (46 kg N/ha) compared to no incorporation (no straw incorporation was not reported). Overall nitrogen increased under straw incorporation (633 and 429 kg N/ha at Gleadthorpe and Morley respectively). In wet winters, straw incorporation reduced nitrate leaching by 25 kg N/ha/y compared to not incorporating straw. Chopped straw reduced nitrate leaching by 12 kg N/ha/y compared to burned straw. There was no difference in grain yield between straw treatments.  There were three residue treatments at two sites: burned straw incorporated (to 15 cm depth), chopped straw incorporated (15 cm depth), and chopped straw not incorporated. All treatments were mouldboard ploughed in autumn to 30 cm depth. Crops grown included: wheat Triticum aestivum, barley Hordeum vulgare, oats Avena sativa, sugar beet Beta vulgaris, winter oilseed rape Brassica napus. Grain and straw samples were used to measure nitrogen content. Soils were sampled to 90 cm depth.