Study

Remediation of subsoil compaction and compaction effects on corn N availability by deep tillage and application of poultry manure in a sandy-textured soil

  • Published source details Motavalli P.P., Stevens W.E. & Hartwig G. (2003) Remediation of subsoil compaction and compaction effects on corn N availability by deep tillage and application of poultry manure in a sandy-textured soil. Soil and Tillage Research, 71, 121-131

Actions

This study is summarised as evidence for the following.

Action Category

Amend the soil with manures and agricultural composts

Action Link
Soil Fertility

Change tillage practices

Action Link
Soil Fertility
  1. Amend the soil with manures and agricultural composts

    A controlled; randomized, replicated experiment in 2000-2001 on fine sandy-silty loam in the USA (Motavalli et al. 2003) found increased soil inorganic nitrogen with increased rates of poultry manure (from 4 to 83 mg N/kg). Corn Zea mays yield was highest under medium manure application (7,466 kg/ha) then high (7,339 kg/ha), low (6,437 kg/ha) and no application (4,464 kg/ha). Corn was planted in 3.8 x 10.6 m plots. Treatments consisted of: deep tillage to 30 cm depth (also called subsoiling), and three levels of soil compaction (0, 2 and 4 passes with a vibrating roller). Four rates of composted poultry manure (at 0, 6, 11, and 18 Mg/ha) were applied in spring to the deep tillage and compaction treatments. All treatments were then disced twice to 15 cm depth. There were four replications. Soils were sampled to 40 cm depth.

     

  2. Change tillage practices

    A controlled; randomized, replicated experiment in 2000-2001 on fine sandy-silty loam in the USA (Motavalli et al. 2003) found lower soil penetration resistance when soil was subsoiled (1.97 MPa) compared to compacted soil (3.43 MPa) and the control (3.06 MPa). There were no effects of compaction or subsoiling on inorganic nitrogen levels in 2000. In 2001, inorganic nitrogen levels were lower in the subsoiled (17.5 mg N/kg) compared to compacted (44.5 mg N/kg) or control treatments (42.5 mg N/kg). The highest corn Zea mays yield was under subsoiling (7994 kg/ha) then the control (7232 kg/ha) and compacted treatments (5411 kg/ha). Corn was planted in 3.8 x 10.6 m plots. Treatments consisted of: deep tillage to 30 cm depth (subsoiling), and three levels of soil compaction (0, 2 and 4 passes with a vibrating roller). Four rates of composted poultry manure (at 0, 6, 11, and 18 Mg/ha) were applied in spring to the deep tillage and compaction treatments. All treatments were then disced twice to 15 cm depth. There were four replications. Soils were sampled to 40 cm depth.

     

Output references

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, terrestrial mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 17

Go to the CE Journal

Subscribe to our newsletter

Please add your details if you are interested in receiving updates from the Conservation Evidence team about new papers, synopses and opportunities.

Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape Programme Red List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Bern wood Supporting Conservation Leaders National Biodiversity Network Sustainability Dashboard Frog Life The international journey of Conservation - Oryx British trust for ornithology Cool Farm Alliance UNEP AWFA Butterfly Conservation People trust for endangered species Vincet Wildlife Trust