Fruit and soil quality of organic and conventional strawberry agroecosystems.
-
Published source details
Reganold J.P., Andrews P.K., Reeve J.R., Carpenter-Boggs L., Schadt C.W., Alldredge J.R., Ross C.F., Davies N.M. & Zhou J. (2010) Fruit and soil quality of organic and conventional strawberry agroecosystems.. PloS ONE, 5, 1-14.
Published source details Reganold J.P., Andrews P.K., Reeve J.R., Carpenter-Boggs L., Schadt C.W., Alldredge J.R., Ross C.F., Davies N.M. & Zhou J. (2010) Fruit and soil quality of organic and conventional strawberry agroecosystems.. PloS ONE, 5, 1-14.
Actions
This study is summarised as evidence for the following.
Action | Category | |
---|---|---|
Convert to organic farming Action Link |
-
Convert to organic farming
A replicated, paired experiment in 2004-2005 on sandy-loam and silty-clay loam soils in California, USA (Reganold et al. 2010) found 159.4% more microorganisms, 33.3% more microorganism activity and a higher genetic diversity of soil organisms (656 genes/group of organisms) on organic farms compared to conventional farms (504 genes/group of organisms). There was 22% more carbon and 30% more nitrogen in organically managed soils. Higher quality strawberry Fragaria ananassa fruit was produced on the organic farms (8.5% more antioxidants (substance which prevents a chemical reaction causing food to deteriorate)) and strawberries were more resistant to disease (strawberries survived 4.54 days on average when mould present) than on conventional farms (strawberries survived 4.15 days). Fruit from organic farms was 13.4% smaller than from conventional farms. The experimental areas included 13 replications of paired commercial organic and conventional strawberry farms. The study took repeated samples of strawberries and soils (to 30 cm depth) to measure strawberry quality, soil biological and chemical properties, and numbers of soil microorganisms.
Output references
|