Conservation Evidence strives to be as useful to conservationists as possible. Please take our survey to help the team improve our resource.

Providing evidence to improve practice

Individual study: Implications of cereal-based crop rotations, nitrogen fertilization, and stubble grazing on soil organic matter in a Mediterranean-type environment

Published source details

Ryan J., Masri S., İbriҫi H., Singh M., Pala M. & Harris H.C. (2008) Implications of cereal-based crop rotations, nitrogen fertilization, and stubble grazing on soil organic matter in a Mediterranean-type environment. Turkish Journal of Agriculture and Forestry, 32, 289-297


This study is summarised as evidence for the intervention(s) shown on the right. The icon shows which synopsis it is relevant to.

Reduce grazing intensity Soil Fertility

A replicated experiment from 1989 to 1997 on a clay soil in northern Syria (Ryan et al. 2008) found that reducing grazing intensity generally increased soil organic matter levels, by 264 t/ha with zero grazing, 253 t/ha with medium intensity and 250.8 t/ha with high intensity grazing of crop residues. Three replications of 36 x 120 m plots included continuous wheat Triticum aestivum, and wheat-fallow, wheat- lentil Lens culinaris, wheat-chickpea Cicer arietinum,  wheat-vetch Vicia sativa, wheat-pasture medic Medicago sp., and wheat-watermelon Citrullus vulgaris rotations. Within each rotation were four smaller 36 x 30 m sub-plots receiving 0, 30, 60 or 90 kg N/ha. Within these were three 12 x 30 m grazing treatments: no, medium and heavy grazing of crop stubbles. Soil organic matter, nitrogen/nitrates, and phosphorus were measured at the beginning of each cropping season.

 

Amend the soil with formulated chemical compounds Soil Fertility

A replicated experiment from 1989 to 1997 on a clay soil in northern Syria (Ryan et al. 2008), found that increasing nitrogen fertilizer addition (0, 30, 60 and 90 kg N/ha) increased soil organic matter (246, 249, 262, 264 t/ha, respectively). Three replications of 36 x 120 m plots included the following crop rotations: continuous fallow, continuous wheat Triticum aestivum, and wheat grown in rotation with lentil Lens culinaris, chickpea Cicer arietinum, vetch Vicia sativa, pasture medic Medicago spp., or watermelon Citrullus vulgaris. Within each rotation were four smaller 36 x 30 m sub-plots with 0, 30, 60 or 90 kg N/ha applied. Within these were 12 x 30 m grazing treatments: no grazing/stubble retention, medium and heavy grazing. Soil organic matter, nitrogen/nitrates, and phosphorus were measured at the beginning of each cropping season.

 

Use crop rotation Soil Fertility

A replicated experiment from 1989 to 1997 on a clay soil in northern Syria (Ryan et al. 2008) found that a wheat Triticum aestivum-fallow rotation had the lowest level of soil organic matter (235 t/ha) while a wheat-medic Medicago spp. (no species specified) rotation had the highest level (290 t/ha). The other rotations, listed according to the level of soil organic matter they maintained and starting with the lowest, were: wheat-melon Citrullus vulgaris (235 t/ha), continuous wheat (246 t/ha), wheat-lentil Lens culinaris (249 t/ha), wheat-chickpea Cicer arietinum (257 t/ha), and wheat-vetch Vicia sativa (266 t/ ha). Rotations of wheat with fallow, wheat with other crops and a continuous wheat control were replicated three times in plots of 36 x 120 m. The wheat rotation treatment included wheat with lentil, chickpea, vetch, pasture medic or watermelon. Within each rotation were four smaller 36 x 30 m sub-plots with 0, 30, 60 or 90 kg N/ha applied. Within these were 12 x 30 m grazing treatments: no grazing, medium and heavy grazing. Soil organic matter, phosphorus, nitrogen and nitrates were measured each cropping season.