The short-term storage and cryopreservation of spermatozoa from hylid and myobatrachid frogs
-
Published source details
Browne R.K., Clulow J. & Manony M. (2002) The short-term storage and cryopreservation of spermatozoa from hylid and myobatrachid frogs. Cryo Letters, 23, 129-136.
Published source details Browne R.K., Clulow J. & Manony M. (2002) The short-term storage and cryopreservation of spermatozoa from hylid and myobatrachid frogs. Cryo Letters, 23, 129-136.
Actions
This study is summarised as evidence for the following.
Action | Category | |
---|---|---|
Amphibians: Freeze sperm or eggs for future use Action Link |
![]() |
|
Freeze sperm or eggs for future use Action Link |
![]() |
-
Amphibians: Freeze sperm or eggs for future use
-
Freeze sperm or eggs for future use
A replicated study of captive frogs in Australia (Browne, Clulow & Manony 2002) found that following storage at −80°C, sperm from tree frog species (Hylidae) showed greater motility than myobatrachid species (0–100 vs 1–20%). For tree frogs, sperm storage at −80°C in 15% dimethyl sulfoxide resulted in the highest motility (15%: 45–100%; 20%: 80%; glycerol 15%: 0–100%; glycerol 20%: 10–87%). Striped marsh frog Limnodynastes peronii sperm maintained higher motility when stored at 0°C in suspension compared to testes (three days: 41 vs 6%). Motility of whistling treefrog Litoria verreauxi sperm did not differ with storage method (three days: 83 vs 86%; six days: 41 vs 40%). Recovery of tree frog sperm did not differ with testes weight. Sperm from six frogs of two species were stored in intact testes and sperm from four frogs of three species were stored in suspension (macerated testes) for three or six days at 0°C. Sperm from nine tree frog and four myobatrachid species were cryopreserved in suspensions of 10% sucrose with dimethyl sulfoxide or glycerol (15 or 20%). Sperm were frozen slowly to −80 °C, thawed in air and observed for three minutes.
Output references
|