Study

The impact of cultivation practice and wheelings on runoff generation and soil erosion on the South Downs: some experimental results using simulated rainfall

  • Published source details Robinson D.A. & Naghizadeh R. (1992) The impact of cultivation practice and wheelings on runoff generation and soil erosion on the South Downs: some experimental results using simulated rainfall. Soil Use and Management, 8, 151-156

Actions

This study is summarised as evidence for the following.

Action Category

Control traffic and traffic timing

Action Link
Soil Fertility

Change tillage practices

Action Link
Soil Fertility
  1. Control traffic and traffic timing

    A randomized, replicated experiment in 1990-1991 on silt loam soil in Shoreham, UK (Robinson & Naghizadeh 1992) found lower runoff in uncompacted ground (3 l/h) compared to compacted ground in tractor wheelings (8 l/h). There were two sites with 100 x 18 m cultivated plots (number not specified). Plots had three different cultivation practices (shallow cultivation, conventional deep cultivation, and deep cultivation followed by heavy rolling). A rainfall simulator was used to test runoff, with each treatment subjected to three simulated rainfall events, lasting one hour at 42.5 mm/h. Runoff and eroded soil was caught in a trap immediately downslope of the rainfall simulator. The volume of runoff and weight of eroded soil were measured.

     

  2. Change tillage practices

    A randomized replicated experiment in 1990-1991 on a calcareous silt loam soil in Shoreham, England, UK (Robinson & Naghizadeh, 1992) found that shallow cultivation reduces the amount of soil lost (4.53 g/h on average) and the amount of runoff (0.82 l/h on average) during heavier rainfall events compared to conventionally cultivated and rolled (with a heavy roller) land (25.54 g/h, 5.87 l/h on average, respectively). There were two sites with cultivated plots (number not specified), which were 100 x 18 m. Plots had three different cultivation practices (shallow cultivation, conventional deep cultivation, and deep cultivation followed by heavy rolling). A rainfall simulator was used, with each treatment subjected to three simulated rainfall events, lasting one hour at 42.5 mm/h. Runoff and eroded soil was caught in a trap in the slope immediately below the rainfall simulator. The volume of runoff and weight of eroded soil were measured.

     

Output references

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, terrestrial mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 17

Go to the CE Journal

Subscribe to our newsletter

Please add your details if you are interested in receiving updates from the Conservation Evidence team about new papers, synopses and opportunities.

Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape Programme Red List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Bern wood Supporting Conservation Leaders National Biodiversity Network Sustainability Dashboard Frog Life The international journey of Conservation - Oryx British trust for ornithology Cool Farm Alliance UNEP AWFA Butterfly Conservation People trust for endangered species Vincet Wildlife Trust