Study

Restoration of Hydrastis canadensis: experimental test of a disturbance hypothesis after two growing seasons

  • Published source details Sinclair A. & Catling P.M. (2004) Restoration of Hydrastis canadensis: experimental test of a disturbance hypothesis after two growing seasons. Restoration Ecology, 12, 184-189.

Summary

Goldenseal Hydrastis canadensis is an endangered perennial woodland herb of north eastern USA and Canada (where it occurs chiefly in Ontario). An experiment was undertaken to evaluate the effects of soil disturbance and fertilizer on goldenseal, including effects on seed production and germination.

Study site: The study was carried out at five deciduous woodland sites (four near the town of Arner, one near Amhertsburg) in Essex County, Ontario, Canada.

Experimental design: Twenty 3 × 3 m blocks at each of the five sites for transplants and 10, 3 × 3 m blocks at each of four of these sites for seed sowing were randomly established in apparent goldenseal habitat within 30 m of existing colonies. Only sites with large populations (>700 stems) were chosen. Four treatments were randomly applied to each block a day before sowing seeds or transplanting. Each treatment covered 1 m², and was 1 m apart to avoid effects of neighbouring plots. Treatments were:

1) substrate turnover - topsoil overturned to 4 cm depth with a shovel, mimicking mammal disturbance or uprooted trees;

2) fertilizer application - 7 g of slow-release granular bone meal (2 : 14 : 0 NPK) sprinkled over the ground, mimicking fertilization by massive defaecation events of formerly present fauna, e.g. flocks of passenger pigeons Ectopistes migratorius (now extinct) or fertilization via flooding;

3) substrate turnover and fertilization;

4) control (no manipulation).

Seed sowing: From 11 to 15 July 1999, ripe fruit was picked from nearby patches and the seeds removed. In the 10 blocks for seeds, 25 seeds were planted just below the soil surface following a 12 cm grid (based on cultivation literature in order to maximize the number of seeds per plot). The total number of planted seeds was 4,000 (25/treatment plot, 100/block, 1,000/site).

Transplanting: From 24 to 27 August 1999 (start of senescence) using a trowel, a rhizome from a stem that had flowered or lost fruit was transplanted from a nearby patch into each 1 m² treatment plot. A total of 400 rhizomes were transplanted (1 per treatment plot, 4 per block, and 80 per site). Stems that had flowered and/or fruited were chosen to eliminate life stage as a factor and to ensure rhizomes of approximately equal size.

Data collection: From 4 to 6 May, 19 to 21 June, and 21 to 23 August 2000 and from 7 to 9 May and 9 to 12 July 2001, transplant stem height and leaf width were measured. Presence or absence of flowers and fruit were noted in 2000, and the number of pericarp divisions per fruit were counted as an estimate of seed production in 2001 (to avoid squashing fruit and interfering with dispersal). Seedlings were visible in 2001, and the number in each plot was recorded from 9 to 12 May.

Effects of treatment on stem production and seedlings: Treatment did not have a significant effect on lack of stem production (rhizome death or dormancy), in either the first or second year, or on lack of germination. This supports the assumption that there was no differential effect of treatment on absence of stem and seedling development.

Cover: Disturbance increased plant cover in both years. After 1 year, there was significantly more cover in soil turnover plots (turnover only c.300 cm²; turnover + fertilizer c. 280 cm²) compared with the control (c.224 cm²). Differences between turnover treatments and the control although not statistically significant in the second year, may have been biologically significant.

Flower and fruit production: In the second year, plants in soil turnover (c.0.28) and soil turnover + fertilization (c.0.3) plots had significantly more flowers compared with the control (c.0.14) after 2 years. Soil turnover + fertilization also gave significantly more fruit compared with the control after 2 years, but the disturbance treatments did not differ significantly from each other.

Seeds: More seeds were produced in the soil turnover + fertilization plots (2.5 seeds/fruit) compared with the control (c.0.6/fruit) after 2 years. Germination and number of seedlings were slightly greater in the control, but standard errors overlapped extensively among treatments. These germination and seedling number differences were not significant in contrast to the significant increase in production of seeds associated with disturbance.

Conclusions: Substrate turnover alone, and in combination with fertilizer, promoted goldenseal growth and recruitment potential (flower, fruit and seed production). Beneficial results of disturbance after 2 years lend support for the idea that goldenseal benefits from certain kinds of natural disturbance currently absent or less frequent than would have formerly occured, and that if disturbance events are accompanied by fertilization (e.g. from bird/mammal droppings), this further benefits the plant.


Note: If using or referring to this published study, please read and quote the original paper, this can be viewed at: http://www.blackwell-synergy.com/journal.asp?ref=1061-2971

Output references
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust