Study

Earthworm abundance and biomass not higher in maize plots with no-tillage; an experiment in Switzerland

  • Published source details Wyss E. & Glasstetter M. (1992) Tillage treatments and earthworm distribution in a Swiss experimental corn field. Soil Biology & Biochemistry, 24, 1635-1639

Actions

This study is summarised as evidence for the following.

Action Category

Undersow spring cereals, with clover for example

Action Link
Farmland Conservation

Plant more than one crop per field (intercropping)

Action Link
Farmland Conservation

Reduce tillage

Action Link
Farmland Conservation
  1. Undersow spring cereals, with clover for example

    A trial at an experimental farm in 1989 on the Swiss Plateau, Switzerland (Wyss & Glasstetter 1992) found that earthworm (Lumbricidae) abundance and biomass were higher in a maize Zea mays plot undersown with grass than in conventionally managed maize, although statistical analyses were not presented. Control and undersown plots had averages of 127 and 145 earthworms/m2 and 45 and 71 g earthworm biomass/m2, respectively. The proportion of deep-burrowing earthworms was similar with 14 and 12% of individuals in the control and undersown plots respectively. A test strip of maize 14 m-long was undersown with grass in summer and compared with a control strip of conventional maize. Earthworms were sampled by hand-sorting 0.1 m3 of soil from each test strip, to a depth of 40 cm, on six dates between April and October 1989. There was no replication.

     

  2. Plant more than one crop per field (intercropping)

    A trial at an experimental farm on the Swiss Plateau, Switzerland, in 1989 (Wyss & Glasstetter 1992) found that earthworm (class: Oligochaeta) abundance but not biomass was higher in a maize Zea mays plot immediately followed by a rye grass Lolium 282 perenne crop (called a ‘catch crop’) to provide winter cover. Control and catch crop plots had averages of 127 and 111 earthworms/m2, and 45 and 64 g earthworm biomass/m2, respectively. The proportion of deep-burrowing earthworms was similar with 14 and 13% of individuals in the control and catch crop plots respectively. A test strip of maize 14 m long was sown with a rye grass catch crop in autumn, and compared with a control strip of conventional maize. Earthworms were sampled by hand-sorting 0.1 m3 of soil from each test strip, to a depth of 40 cm, on six dates between April and October 1989. There was no replication.

  3. Reduce tillage

    A trial at an experimental farm in 1989 on the Swiss Plateau, Switzerland (Wyss & Glasstetter 1992) found that earthworm (Lumbricidae) abundance and biomass were not higher in a no-tillage plot than other plots. No-tillage and control plots had averages of 47 and 127 earthworms/m2, and 57 and 45 g earthworm biomass/m2, respectively. There was a much higher proportion of deep-burrowing earthworms in the no-tillage plot (67% of individuals, compared to 11-14% of individuals in ploughed plots), which is why there were more individual worms in the control plot. Test strips of maize Zea mays 14 m-long were either managed with no-tillage (sowing directly into undisturbed stubble) or conventionally ploughed and harrowed. The no-tillage treatment also had rye grass Lolium spp. sown after the maize. Earthworms were sampled by hand-sorting 0.1 m3 of soil from each test strip, to a depth of 40 cm, on six dates between April and October 1989. There was no replication.

     

Output references

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, terrestrial mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 18

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape Programme Red List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Bern wood Supporting Conservation Leaders National Biodiversity Network Sustainability Dashboard Frog Life The international journey of Conservation - Oryx British trust for ornithology Cool Farm Alliance UNEP AWFA Butterfly Conservation People trust for endangered species Vincet Wildlife Trust