Managing sown field margin strips on contrasted soil types in three environmentally sensitive areas
-
Published source details
West T.M. & Marshall E.J.P. (1996) Managing sown field margin strips on contrasted soil types in three environmentally sensitive areas. Aspects of Applied Biology, 44, 269-276.
Published source details West T.M. & Marshall E.J.P. (1996) Managing sown field margin strips on contrasted soil types in three environmentally sensitive areas. Aspects of Applied Biology, 44, 269-276.
Actions
This study is summarised as evidence for the following.
Action | Category | |
---|---|---|
Create uncultivated margins around intensive arable or pasture fields Action Link |
![]() |
|
Plant nectar flower mixture/wildflower strips Action Link |
![]() |
-
Create uncultivated margins around intensive arable or pasture fields
A replicated, controlled, randomized study of four field margins in three Environmentally Sensitive Areas in England (West & Marshall 1996) found that plant cover was higher in margins sown with grass or grass/wildflower mixtures than those naturally regenerated, but plant diversity within naturally regenerated margins was similar to some margins sown with diverse seed mixtures. In 1994 plant diversity was higher in plots sown with more complex seed mixtures (32-37) than those sown with grass only (22-27) or regenerated naturally (21-25). In 1995, grass seed only plots tended to be the least diverse (15-21), but naturally regenerated plots (18-28) were as diverse as some complex seed mixtures (23-31). Species diversity did not differ between management treatments. Margins were created in each field and divided into six plots (4 x 30 m). Each was (randomly) sown with a seed mixture: grass, low cost mix (3 grass: 7 wildflower), alkaline soil (6:16), neutral soil (5:15), acid soil (6:16) and one natural regeneration. Plots were divided into 10 m sub-plots, which were either: unmanaged, cut once or received grass herbicide. Plants were sampled in each sub-sub-plot in summer 1994-1995. The three Environmentally Sensitive Areas studied were: the Breckland Environmentally Sensitive Area in Suffolk, the Somerset Levels and Moors Environmentally Sensitive Area and the South Wessex Downs Environmentally Sensitive Area in Wiltshire and Dorset. The same study is presented in Marshall et al. 1994.
Additional reference:
Marshall E.J.P., West T.M. & Winstone L. (1994) Extending field boundary habitats to enhance farmland wildlife and improve crop and environmental protection. Aspects of Applied Biology, 40, 387-391.
-
Plant nectar flower mixture/wildflower strips
A replicated, controlled, randomized study of four field margins in southern and eastern England (West & Marshall 1996) found that plant cover was higher in margins sown with grass or grass/wildflower mixtures than naturally regenerated margins, and diversity tended to be higher with more complex seed mixtures. Percentage plant cover was significantly higher on spring-sown and Breckland autumn-sown grass or grass/wildflower plots than naturally regenerating plots. Plant cover did not differ with seed mixture diversity or management treatment (unmanaged, cut, grass herbicide), although cover tended to be lower on cut plots in the first year. In 1994 plant diversity was higher in plots sown with more complex seed mixtures (32-37 species) than those sown with grass-only (22-27) or naturally regenerated (21-25). In 1995, grass-seed-only plots tended to be the least diverse (15-21 species), but naturally regenerated plots (18-28) were as diverse as some complex seed mixtures (23-31). Species diversity did not differ between management treatments. Margins were created in each field and divided into six plots (4 x 30 m). Each was (randomly) sown with a seed mixture: grass, low cost mix (3 grass: 7 wildflower species), alkaline soil mix (6: 16), neutral soil mix (5: 15), acid soil mix (6: 16) and one naturally regenerated treatment. Plots were divided into 10 m sub-plots, which were either unmanaged, cut once, or treated with grass-specific herbicide. Plants were sampled in each sub-plot in summer 1994-1995.
Output references
|