Conservation Evidence strives to be as useful to conservationists as possible. Please take our survey to help the team improve our resource.

Providing evidence to improve practice

Individual study: Arthropod abundance and diversity in differently vegetated margins of arable fields

Published source details

Thomas C.F.G. & Marshall E.J.P. (1999) Arthropod abundance and diversity in differently vegetated margins of arable fields. Agriculture, Ecosystems & Environment, 72, 131-144


This study is summarised as evidence for the intervention(s) shown on the right. The icon shows which synopsis it is relevant to.

Plant grass buffer strips/margins around arable or pasture fields Farmland Conservation

A randomized, replicated controlled trial between 1993 to 1996 in Bristol, UK (Thomas & Marshall 1999) found that 4 m-wide field margins sown with rye grass Lolium perenne did not have more suction-sampled invertebrates, over-wintering invertebrates in the soil or ground beetles (Carabidae) than control cropped margins. There were 110-130 invertebrates/sample on control (cropped) and grass-sown plots. There was no difference in the number of ground beetle species (average of 8 species/plot), nor in the numbers of the four most commonly caught ground beetle species, between margin types. Wolf spiders (Lycosidae) were more abundant on grass and wildflower-sown margins than on control or naturally regenerated margins (numbers not given). Three field margins were established in spring 1993. Experimental plots 10 x 4 m were either sown with arable crop (control), rye grass or a wildflower and grass seed mix, or left to naturally regenerate. There were three replicate plots in each margin. All plots were cut annually after harvest, and cuttings left in place. Ground beetles were sampled in eight pitfall traps in or near each margin, for one week in June for four years, 1993-1996. Invertebrates were sampled using a vacuum sampler on plots of two of the three margins in June 1994. Arthropods were extracted from soil samples taken from plots of one margin in December 1993 and February 1994.

Create uncultivated margins around intensive arable or pasture fields Farmland Conservation

A randomized, replicated controlled trial from 1993 to 1996 in Bristol, UK (Thomas & Marshall 1999), found that 4 m-wide field margins left to naturally regenerate had more suction-sampled invertebrates but not more ground beetles (Carabidae) than control cropped margins or margins sown with grass. There were around 180 invertebrates per sample on naturally regenerated margins, compared to 110-130 invertebrates/sample on control or grass-sown plots. There was no difference in the number of ground beetle species (average of 8 species/plot), nor in the numbers of the four most commonly caught ground beetle species, between margin types. In a 2 m-wide margin, there were more over-wintering invertebrates in the soil of the wildflower sown half than the naturally regenerating half, but this difference was not found in 4 m-wide replicated experimental plots. Three field margins were established in spring 1993 at one site. Experimental plots 10 x 4 m were either sown with arable crop (control), rye grass Lolium perenne or a wildflower and grass seed mix, or left to naturally regenerate. There were three replicate plots in each margin. All plots were cut annually after harvest, and cuttings left in place. Another 100 x 2 m wide field margin, with 50 m sown with a wildflower mix and 50 m unsown, was used to monitor wintering invertebrates. Ground beetles were sampled in eight pitfall traps in or near each margin, for a week in June for four years, 1993-1996. Invertebrates were sampled using a vacuum sampler on plots of two of the three margins in June 1994. Arthropods were extracted from soil samples taken from plots of two margins in December 1993 and February 1994.

Plant nectar flower mixture/wildflower strips Farmland Conservation

A randomized, replicated controlled trial from 1993 to 1996 near Bristol, UK (Thomas & Marshall 1999) found that 4 m-wide field margins sown with a nectar flower mixture had more suction-sampled invertebrates, but not more ground beetles (Carabidae), than control cropped margins or margins sown with grass. There were around 200 invertebrates/sample on margins sown with a wildflower/grass mix and naturally regenerated margins, compared to 110-130 invertebrates/sample on control or grass-sown plots. Wolf spiders (Lycosidae) were more abundant on grass and wildflower-sown margins than on control or naturally regenerated margins (numbers not given). There was no difference in the number of ground beetle species (average 8 species/plot), nor in the numbers of the four most commonly caught ground beetle species, between margin types. In a 2 m-wide margin, there were more over-wintering invertebrates in the soil of the wildflower-sown half than the naturally regenerating half, but this difference was not found in 4 m-wide replicated experimental plots. Three field margins were established in spring 1993. Experimental plots 10 x 4 m were either sown with arable crop (control), rye grass Lolium perenne or a wildflower and grass seed mix, or left to naturally regenerate. There were three replicate plots in each margin. All plots were cut annually after harvest, and cuttings left in place. Another 100 x 2 m wide field margin, 50 m sown with a wildflower mix and 50 m unsown, was used to monitor wintering invertebrates. Ground beetles were sampled in eight pitfall traps in or near each margin, for one week in June for four years. Invertebrates were sampled using a vacuum sampler on plots in two of the three margins in June 1994. Arthropods were extracted from soil samples taken from plots in two margins in December 1993 and February 1994.