Conservation Evidence strives to be as useful to conservationists as possible. Please take our survey to help the team improve our resource.

Providing evidence to improve practice

Individual study: Rove beetles (Staphylinidae) are more diverse under integrated farming, and larvae prefer soils with reduced tillage; an experiment at Reinshof experimental farm, Lower Saxony, Germany

Published source details

Krooss S. & Schaefer M. (1998) The effect of different farming systems on epigeic arthropods: a five-year study on the rove beetle fauna (Coleoptera: Staphylinidae) of winter wheat. Agriculture, Ecosystems & Environment, 69, 121-133


This study is summarised as evidence for the intervention(s) shown on the right. The icon shows which synopsis it is relevant to.

Reduce tillage Farmland Conservation

A controlled trial at Reinshof experimental farm, Lower Saxony, Germany (Krooss & Schaefer 1998) found that the number of adult rove beetles (Staphylinidae) was similar in ploughed and unploughed wheat field plots, but there were more beetle larvae in unploughed plots. Ten rove beetle species (of a total of 94 species or types) preferred soils with reduced tillage as larvae and adults. The experiment was carried out on four wheat fields, half ploughed and half subject to non-inversion tillage, in 1992 and 1993. Four pitfall and four emergence traps were set in each half of each field and monitored throughout the year, or from April to July respectively. Each field was managed under a different farming system, as part of another experiment, so the four fields were not replicates.

 

Reduce fertilizer, pesticide or herbicide use generally Farmland Conservation

A controlled trial of different farming systems at Reinshof experimental farm, Lower Saxony, Germany (Krooss & Schaefer 1998) found that the highest number of rove beetles (Staphylinidae) was caught under conventional farming with reduced inputs (50% reduction in nitrogen fertilizer, no insecticide, although herbicides were used) (7,897 beetles in total, compared to 6,581 in the control plot with conventional farming). The reduced input field did not have more rove beetle species than conventional farming (39 and 42 species respectively). Extensive farming with no nitrogen fertilizer, herbicides or insecticides had the lowest number of rove beetles (5,038 beetles, from 40 species). Rove beetles were monitored with pitfall and/or emergence traps throughout the year. The experiment was run from 1990 to 1994. There were three or four fields under each treatment, representing the full crop rotation. Monitoring was only in the wheat field from each system, each year. The study also included integrated farming (30% of the nitrogen fertilizer used in conventional system and 50% of the pesticides/herbicides, along with other measures) and extensive farming. The authors suggest that integrated farming without fertilizer does not create a favourable environment for beetles because plant growth is sparse. This study was part of the same project (INTEX – Integrated Farming and Extensification of Agriculture) and was carried out in partly the same research site as (Hasken & Poehling 1995, Schmidt et al. 1995).