Conservation Evidence strives to be as useful to conservationists as possible. Please take our survey to help the team improve our resource.

Providing evidence to improve practice

Individual study: Grassland conservation headlands: their impact on invertebrate assemblages in intensively managed grassland

Published source details

Cole L.J., McCracken D.I., Baker L. & Parish D. (2007) Grassland conservation headlands: their impact on invertebrate assemblages in intensively managed grassland. Agriculture, Ecosystems & Environment, 122, 252-258


This study is summarised as evidence for the intervention(s) shown on the right. The icon shows which synopsis it is relevant to.

Reduce grazing intensity on grassland (including seasonal removal of livestock) Farmland Conservation

A replicated, controlled study of five grassland headlands on four intensively managed pastoral farms across Scotland (Cole et al. 2007) investigated the effect of conservation headlands, with no grazing from April-August and no fertilizer or pesticide applications on the abundance of ground active invertebrates and found that aphids/leafhoppers/planthoppers (Homoptera) and true bugs (Heteroptera) were more abundant in conservation headlands (no fertilizers, pesticides or grazing April-August) than conventional headlands and open fields. Aphids/leafhoppers/planthoppers had higher activity densities in conservation headlands (2.1) and field edges (conventional: 2.0, conservation: 1.9) than in conventional headlands (0.8) and open fields (0.6). Roundback slugs (Arionidae) showed the same pattern (2.3 conservation headlands, 2.1 conventional field edges, 2.4 conservation field edges, 0.7 conventional headlands, 0.3 open fields). True bugs were more abundant in conservation headlands (0.7) and field edges (1.1-1.2) than in open fields (0.2). Keelback slug (Limacidae) activity density was greater in both headlands (conventional: 1.9, conservation: 2.8) and field edges (2.3-2.7) than in open fields (1.1). Butterfly/moth (Lepidoptera) and sawfly (Symphyta) larvae showed a similar trend, whereas ground beetle (Carabidae) abundance did not differ with treatment (3.5-3.6). Ground beetle activity density was highest in open fields (4.0). One headland in each field was divided into two areas of 6 x 100 m, a conventional and conservation headland. In each field, invertebrates were sampled with five pitfall transects of nine traps in: the conservation headland, conservation field edge, conventional headland, conventional field edge and open field. Traps were set for 3–4 weeks in May-June and July-August 2000-2003.

 

Leave headlands in fields unsprayed (conservation headlands) Farmland Conservation

A replicated, controlled study in 2000-2003 of five grassland headlands on four intensively managed pastoral farms across Scotland (Cole et al. 2007) found that aphids/leafhoppers/planthoppers (Homoptera) and true bugs (Heteroptera) were more abundant in conservation headlands (no fertilizers, pesticides or grazing April-August) than conventional headlands and open fields. Homoptera had higher activity densities in conservation headlands (2.1) and field edges (conventional: 2.0, conservation: 1.9) than in conventional headlands (0.8) and open fields (0.6). Roundback slugs (Arionidae) showed the same pattern (2.3 conservation headlands, 2.1 conventional field edges, 2.4 conservation field edges, 0.7 conventional headlands, 0.3 open fields). True bugs were more abundant in conservation headlands (0.7) and field edges (1.1-1.2) than in open fields (0.2). Keelback slug (Limacidae) activity density was greater in both headlands (conventional: 1.9, conservation: 2.8) and field edges (2.3-2.7) than in open fields (1.1). Butterfly/moth (Lepidoptera) and sawfly (Symphyta) larvae showed a similar trend, whereas ground beetle (Carabidae) abundance did not differ with treatment (3.5-3.6). Ground beetle activity density was highest in open fields (4.0). One headland in each field was divided into two areas of 6 x 100 m, a conventional and conservation headland. In each field, invertebrates were sampled with five pitfall transects of nine traps in the conservation headland, conservation field edge, conventional headland, conventional field edge and open field. Traps were set for 3–4 weeks in May-June and July-August 2000-2003.