Collected Evidence: Collected Evidence: Exclude or remove livestock from historically grazed freshwater marshes Ten studies evaluated the effects, on vegetation, of excluding or removing livestock from historically grazed freshwater marshes. Seven studies were in the USA, two were in Morocco and one was in Australia. In all 10 studies the focal livestock included cattle (mixed with sheep in the two studies in Morocco). Two studies in the USA were based on the same experimental set-up, and the two studies in Morocco shared some study sites. VEGETATION COMMUNITY Community composition (4 studies): Two site comparison studies in Morocco and the USA reported that marshes/pools fenced to exclude livestock for 3–30 years contained a different overall plant community to grazed sites. In the USA, the precise effect depended on the time since exclusion. Two replicated, randomized, paired, controlled studies in marshes in Australia and the USA found that fencing to exclude cattle typically had no significant effect on the overall plant community composition after 1–14 years. One of the studies also found that the plant community in fenced and grazed marshes was of similar quality, relative to pristine local marshes. Relative abundance (3 studies): Of three replicated, randomized, paired, controlled studies that reported data on the relative abundance of plant groups, two studies (based on one experimental set-up) in the USA found that ephemeral pools fenced to exclude cattle for 1–10 years had similar or greater cover of grasses relative to forbs than pools that remained grazed. The other study, also in the USA, found that the relative abundance of forbs, grass-like plants and shrubs was similar in marshes fenced to exclude cattle for 1–3 years and marshes that remained grazed. Overall richness/diversity (6 studies): Four replicated studies (two also randomized, paired, controlled) in the USA, Morocco and Australia found that marshes/pools fenced to exclude cattle, for 1–30 years, typically had similar overall plant species richness to sites that remained grazed. One of the studies found that the same was true for overall plant diversity. One replicated, site comparison study of ephemeral pools in Morocco found that pools fenced to exclude livestock for >30 years had similar (in a dry year) or greater (in a wet year) plant species richness compared to pools that remained grazed. One site comparison study in the USA found that marshes fenced to exclude cattle for 3–13 years contained fewer plant species than grazed marshes, and had similar or lower plant diversity. Characteristic plant richness/diversity (1 study): One site comparison study of ephemeral pools in Morocco found that pools fenced to exclude livestock for >30 years contained a similar number of wetland-characteristic plant species to pools that remained grazed. Native/non-target richness/diversity (3 studies): Of three replicated, randomized, paired, controlled studies that reported data on native plant species richness, two studies (based on one experimental set-up) in the USA found that fencing ephemeral pools to exclude cattle for 1–10 years typically reduced native plant species richness. The other study, also in the USA, found that native plant species richness was similar in marshes fenced to exclude cattle for 1–3 years and marshes that remained grazed. VEGETATION ABUNDANCE Overall abundance (3 studies): Two replicated, site comparison studies in the USA and Morocco found that ponds/pools fenced to exclude cattle for >10 years contained more vegetation than sites that remained grazed. This was measured in terms of emergent cover around pond margins or peak above-ground biomass in ephemeral pools. One replicated, randomized, paired, controlled study in Australia found that marshes fenced to exclude cattle for ≤4 years contained similar above-ground vegetation biomass to marshes that remained grazed. Characteristic plant abundance (1 study): One site comparison study of ephemeral pools in Morocco found that the overall abundance of wetland-characteristic plant species was greater in pools fenced to exclude livestock for >30 years than in pools that remained grazed. Herb abundance (1 study): One replicated, randomized, paired, controlled, before-and-after study in the USA found that fencing pastures to exclude cattle typically increased herb cover in wetlands along creeks, but had no significant effect on herb cover within spring wetlands. Individual species abundance (2 studies): Two replicated, randomized, paired, controlled studies in freshwater marshes in Australia and the USA quantified the effect of this action on the abundance of individual plant species (see original papers for data). VEGETATION STRUCTURE Visual obstruction (1 study): One replicated, site comparison study in the USA found that ponds fenced to exclude cattle for >10 years had greater horizontal vegetation cover, around their margins, than ponds that remained grazed. Height (2 studies): Two replicated studies (one also randomized, paired, controlled, before-and-after) in the USA found that fencing ponds to exclude cattle, for 1–3 or >10 years, increased the height of vegetation around their margins. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2966https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2966Thu, 25 Mar 2021 14:14:57 +0000Collected Evidence: Collected Evidence: Exclude or remove livestock from historically grazed brackish/salt marshes Fifteen studies evaluated the effects, on vegetation, of excluding or removing livestock from historically grazed brackish/salt marshes. There were five studies in Germany. There were two studies in the UK, Denmark and the Netherlands. There was one study in each of the USA, Sweden, France and Argentina. Livestock were sheep, cattle, sheep and cattle, cattle and horses, or unspecified. There was overlap in the sites used in two studies. Two other studies took place in one marsh, but with different experimental set-ups. VEGETATION COMMUNITY Overall extent (1 study): One controlled study of a salt marsh in Germany reported that in a plot fenced to exclude cattle for eight years, the total vegetated area was greater than in a plot that remained grazed. Community types (1 study): One site comparison study of brackish and salt marshes in Germany reported that reducing (or stopping) grazing affected the nature of transitions between vegetation types over time, but that the precise effect varied with environmental conditions. Community composition (5 studies): Three paired studies (two also replicated and controlled) in brackish/salt marshes in France, Argentina and the Netherlands reported that the effect of excluding livestock for 5–30 years on the overall plant community composition depended on plot elevation/flooding regime. In one of these studies, the effect of livestock exclusion was not separated from the effect of general legal protection. Two studies in one salt marsh in Denmark reported that excluding livestock had little effect on the identity of plant species in the community after six years. Overall richness/diversity (6 studies): Two studies (one controlled, one before-and-after) in one salt marsh in Denmark reported that excluding sheep and cattle for 6–7 years had no effect on overall plant species richness. One replicated, paired, controlled study in a salt marsh in the Netherlands reported that plots fenced to exclude cattle for seven years had lower plant species richness than areas that remained grazed. Two controlled studies (one also replicated and paired) in salt marshes in Germany found that the effect of removing sheep on overall plant species richness depended on the scale of measurement and the grazing intensity used for comparison – with inconsistent results across these studies even for similar scales and intensities. One paired, site comparison study of salt marshes in Argentina found that the effect of excluding cattle (along with legal protection) increased plant species richness at lower elevations, but did not significantly affect plant diversity at any elevation. VEGETATION ABUNDANCE Overall abundance (4 studies): Three studies (two controlled, one before-and-after) in salt marshes in the UK and Denmark reported that excluding livestock for 2–6 years maintained or increased overall vegetation abundance (although in one study, only by a small amount). One controlled study in a salt marsh in Germany found that a paddock left ungrazed for 16–18 years had greater overall vegetation cover than lightly or heavily grazed paddocks, but lower cover than a moderately grazed paddock. Individual species abundance (11 studies): Eleven studies quantified the effect of this action on the abundance of individual plant species. For example, five studies (four controlled, one before-and-after) on salt marshes in the UK, Denmark, Germany and the Netherlands reported that excluding livestock for 2–8 years reduced (or prevented increases in) cover of saltmarsh grass Puccinellia maritima. However, two controlled studies (one also replicated and paired) on salt marshes in Denmark and Sweden reported greater saltmarsh grass cover in areas fenced to exclude livestock for 1–6 years than in areas that remained grazed. Four studies (three controlled, one before-and-after) on salt marshes in Denmark and Germany reported that excluding or removing livestock for 4–16 years increased cover of sea purslane Halimione portulacoides. VEGETATION STRUCTURE Height (5 studies): Five controlled studies (two also replicated and paired) in salt marshes in Sweden and Germany, and brackish wet grassland in the UK, found that ungrazed plots (livestock excluded or removed) contained taller vegetation than plots that remained grazed. Vegetation was surveyed after one month, 1–8 years or 16–22 years. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2967https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2967Thu, 25 Mar 2021 14:15:09 +0000Collected Evidence: Collected Evidence: Exclude or remove livestock from historically grazed freshwater swampsWe found no studies that evaluated the effects, on vegetation, of excluding or removing livestock from historically grazed freshwater swamps.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2968https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2968Thu, 25 Mar 2021 14:15:24 +0000Collected Evidence: Collected Evidence: Exclude or remove livestock from historically grazed brackish/saline swamps One study evaluated the effects, on vegetation, of excluding or removing livestock from historically grazed brackish/saline swamps. The study was in South Africa and the focal livestock were cattle. VEGETATION COMMUNITY   VEGETATION ABUNDANCE Individual species abundance (1 study): One replicated, paired, controlled study in South Africa reported that more grey mangrove Avicennia marina seedlings appeared in plots fenced to exclude cattle for two years, than in plots left open to cattle. VEGETATION STRUCTURE Height (1 study): One replicated, paired, controlled study in South Africa reported that mangrove trees fenced off from cattle were taller, after two years, than trees accessible to cattle. OTHER Growth (1 study): One replicated, paired, controlled study in South Africa found that mangrove trees fenced off from cattle grew more over two years – in height, diameter and crown volume –than trees accessible to cattle. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2969https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2969Thu, 25 Mar 2021 14:15:41 +0000Collected Evidence: Collected Evidence: Divert/block/stop saltwater inputsWe found no studies that evaluated the effects, on vegetation, of diverting/blocking/stopping saltwater inputs to marshes or swamps.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3042https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3042Thu, 01 Apr 2021 15:15:59 +0100Collected Evidence: Collected Evidence: Divert/block/stop freshwater inputsWe found no studies that evaluated the effects, on vegetation, of diverting/blocking/stopping excessive freshwater inputs to marshes or swamps.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3043https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3043Thu, 01 Apr 2021 15:18:12 +0100Collected Evidence: Collected Evidence: Exclude wild invertebrates using physical barriersWe found no studies that evaluated the effects, on vegetation, of physically excluding wild invertebrates from marshes or swamps.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3140https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3140Mon, 05 Apr 2021 14:24:23 +0100Collected Evidence: Collected Evidence: Divert/block/stop polluted water inputsWe found no studies that evaluated the effects, on marsh or swamp vegetation, of diverting/blocking/stopping polluted water inputs.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3143https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3143Mon, 05 Apr 2021 15:12:59 +0100Collected Evidence: Collected Evidence: Designate zones for migration of marshes or swamps as climate changesWe found no studies that evaluated the effects, on vegetation, of designating zones for migration of marshes or swamps under climate change.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3185https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3185Tue, 06 Apr 2021 17:10:15 +0100Collected Evidence: Collected Evidence: Excavate freshwater pools Seven studies evaluated the effects, on vegetation within pools or surrounding marshes/swamps, of excavating freshwater pools. Five studies were in the USA, one was in Guam and one was in Canada. Two of the studies in the USA were based on the same set of pools. VEGETATION COMMUNITY Relative abundance (2 studies): One replicated, paired, site comparison study in a freshwater marsh in Canada reported that a smaller proportion of individual plants around excavated pools were wetland-characteristic species, compared to the proportion around natural pools. The excavated pools were 1–3 years old. One replicated study in the USA reported that excavated pools became dominated by non-native plant species over eight years. Overall richness/diversity (3 studies): One replicated, paired, site comparison study in a freshwater marsh in Canada found that overall plant species richness and diversity were similar around excavated pools and natural pools, 1–3 years after excavation. Two studies involving freshwater marshes in Guam and the USA simply quantified plant species richness 12–18 months after excavation (along with other interventions). VEGETATION ABUNDANCE Overall abundance (1 study): One replicated, site comparison study in the USA found that excavated and natural pools had similar cover of emergent vegetation, seven years after excavation. The same was true for submerged vegetation. Characteristic plant abundance (2 studies): Two replicated studies in the USA reported the abundance of native pool-characteristic species over 3–8 years after excavating pools. One of the studies was also a site comparison and reported that these species were less abundant in the excavated pools than nearby natural pools. Shrub abundance (2 studies): One replicated, site comparison study in the USA found that excavated and natural pools had similar cover of shrubby vegetation after seven years. One replicated study in the USA simply quantified shrub abundance over five years after excavating pools/potholes (along with other interventions). Algae/phytoplankton abundance (1 study): One replicated, site comparison study in the USA found that excavated and natural pools contained a similar biomass of surface-coating algae and phytoplankton, after seven years. The same was true for phytoplankton after eight years. Individual species abundance (5 studies): Five studies quantified the effect of this action on the abundance of individual plant species. For example, one replicated, site comparison study in the USA found that excavated and natural pools had similar cover of loosestrife Lythrum sp. seven years after excavation, but that excavated pools had greater cover of duckweed Lemna sp., cattails Typha spp. and common reed Phragmites australis. VEGETATION STRUCTURECollected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3211https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3211Fri, 09 Apr 2021 08:47:38 +0100Collected Evidence: Collected Evidence: Excavate brackish/saline poolsWe found no studies that evaluated the effects, on vegetation within pools or surrounding marshes/swamps, of excavating brackish/saline pools.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3212https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3212Fri, 09 Apr 2021 08:48:33 +0100Collected Evidence: Collected Evidence: Disturb soil/sediment surface: freshwater marshes Two studies evaluated the effects, on vegetation, of disturbing the surface of freshwater marshes. Both studies were in the USA – in the same region but different sites. VEGETATION COMMUNITY Community composition (1 study): One replicated, paired, controlled study in rewetted marshes in the USA found that ploughed plots contained a plant community characteristic of wetter conditions than unploughed plots after one growing season – but not after two. Overall richness/diversity (2 studies): Two replicated, controlled studies in rewetted marshes in the USA found that ploughed plots typically contained more wetland plant species than unploughed plots after one growing season – but not after two. VEGETATION ABUNDANCE Overall abundance (2 studies): Two replicated, controlled studies in rewetted marshes in the USA found that ploughed plots had greater cover of wetland plants than unploughed plots after one growing season – but not after two. Individual species abundance (1 study): One replicated, controlled study in rewetted marshes in the USA found that ploughed plots had much greater cover of cattails Typha than unploughed plots after two growing seasons. VEGETATION STRUCTURECollected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3226https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3226Fri, 09 Apr 2021 14:04:02 +0100Collected Evidence: Collected Evidence: Disturb soil/sediment surface: brackish/salt marshes One study evaluated the effects, on vegetation, of disturbing the surface of brackish/salt marshes. The study was in the USA. VEGETATION COMMUNITY Community composition (1 study): One replicated, paired, site comparison study of brackish/salt marshes in the USA reported that marshes disked every spring for at least six years (and drawn down during spring/autumn) shared only 24–34% of plant species with marshes that were not disked (or drawn down). Overall richness/diversity (1 study): The same study found that overall plant species richness and diversity were similar in managed marshes (disked every spring and drawn down during spring/autumn, for at least six years) and unmanaged marshes (neither disked nor drawn down). VEGETATION ABUNDANCE   VEGETATION STRUCTURECollected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3227https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3227Fri, 09 Apr 2021 14:04:14 +0100Collected Evidence: Collected Evidence: Disturb soil/sediment surface: freshwater swampsWe found no studies that evaluated the effects, on vegetation, of disturbing the surface of freshwater swamps.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3228https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3228Fri, 09 Apr 2021 14:04:26 +0100Collected Evidence: Collected Evidence: Disturb soil/sediment surface: brackish/saline swampsWe found no studies that evaluated the effects, on vegetation, of disturbing the surface of brackish/saline swamps.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3229https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3229Fri, 09 Apr 2021 14:04:36 +0100Collected Evidence: Collected Evidence: Directly plant non-woody plants: freshwater wetlands Twenty-four studies evaluated the effects, on vegetation, of directly planting emergent, non-woody plants in freshwater wetlands. Sixteen studies were in the USA. There was one study in each of Guam, the Netherlands, Israel, Ireland, the UK, Italy, Australia and China. Two pairs of studies in Minnesota and South Dakota took place in the same area but used different experimental set-ups. VEGETATION COMMUNITY Community composition (1 study): One replicated, site comparison study around fresh/brackish lakes in Australia reported that as planted rush stands aged, their near-shore plant community became more similar to that behind mature natural rush stands. Overall richness/diversity (9 studies): Two studies (including one replicated, randomized, controlled) in freshwater marshes in China and the USA reported that planting herbs increased plant species richness and/or diversity for up to five years. Two controlled studies in freshwater marshes in the USA reported that planted and unplanted sites had similar plant species richness after 2–3 years. Three studies in the USA, the UK and Australia compared plant species richness in marshes that had been planted with herbs (sometimes along with other interventions) and natural marshes, and reported that it was never higher in planted marshes. Three studies involving freshwater marshes in Guam, the USA and Italy simply quantified plant species richness for up to 13 years after planting herbs (along with other interventions). Characteristic plant richness/diversity (1 study): One replicated, paired, controlled study in freshwater wetlands in the USA found that plots planted with wetland-characteristic herbs had a similar richness of wetland-characteristic plant species, after three years, to unplanted plots. VEGETATION ABUNDANCE Overall abundance (4 studies): One before-and-after study of a freshwater marsh and wet meadow in China found that vegetation cover was greater five years after planting herbs than in the year before planting. One replicated, paired, controlled study in freshwater wetlands in the USA found that plots planted with herbs had similar overall vegetation cover, after three years, to unplanted plots. One replicated, site comparison study around fresh/brackish lakes in Australia found that as planted rush stands aged, the density of plants in adjacent near-shore vegetation became more similar to mature natural stands. One study in a freshwater marsh in the USA simply quantified vegetation cover and density over 1–9 years after planting herbs (along with other interventions). Characteristic plant abundance (1 study): One replicated, paired, controlled study in freshwater wetlands in the USA found that plots planted with wetland-characteristic herbs had greater cover of wetland-characteristic plants, after three years, than unplanted plots. Individual species abundance (13 studies): Thirteen studies quantified the effect of this action on the abundance of individual plant species. For example, one replicated, paired, controlled study in freshwater wetlands in the USA found that both planted herb species had greater cover in planted than unplanted plots, after three years. Three studies in the UK, the USA and Australia compared the abundance of herb species where they had been planted to their abundance in natural marshes: two found that the planted species was more dense in planted than natural areas after 5–14 years, and one found that planted rush stands became more dense (i.e. more like natural stands) as they aged. VEGETATION STRUCTURE Overall structure (1 study): One replicated, site comparison study around fresh/brackish lakes in Australia reported that as planted rush stands aged, their width increased – becoming more like mature natural stands. Height (4 studies): One replicated, site comparison study around fresh/brackish lakes in Australia reported that as planted rush stands aged, their maximum height increased – becoming more like mature natural stands. One before-and-after study of a freshwater marsh and wet meadow in China found that vegetation was taller five years after planting herbs than in the year before planting. One site comparison study of wet meadows in the USA reported that sedge tussocks in a restored meadow were shorter than sedge tussocks in natural meadows, 11–14 years after planting (along with other interventions). One replicated study in wet basins in the USA simply reported an increase in the average height of a herb species over three growing seasons after it was planted. Diameter/perimeter/area (1 study): One site comparison study of wet meadows in the USA reported that sedge tussocks in a restored meadow had a smaller perimeter than sedge tussocks in natural meadows, 11–14 years after planting (along with other interventions). Basal area (1 study): One site comparison study of wet meadows in the USA reported that the basal area of sedge tussocks was lower in a restored meadow than in natural meadows, 11–14 years after planting (along with other interventions). Individual plant size (2 studies): Two replicated studies in wet meadow restoration sites in the USA reported that the size of Carex stricta seedlings increased over two months or three growing seasons after planting. This was true for the average number of shoots/plant and biomass/plant. OTHER Survival (14 studies): Nine studies (eight replicated) in the USA and Israel quantified survival rates of individual herbs planted in freshwater wetlands. Survival rates ranged from 0% to 100% after 1–3 growing seasons. Eight studies (including five replicated and two before-and-after) in Guam, the USA, the Netherlands and Israel reported 0% survival or absence of planted (or sown) herb species, in at least some cases, after three months to seven years. Proposed factors affecting survival included elevation/water levels, herbivory, time of planting and plug type. Growth (2 studies): Two studies monitored true growth of individual herbs (rather than changes in average height of survivors). The two studies (one replicated) in Ireland and the USA reported that herbs grew over 1–2 growing seasons after planting. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3256https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3256Sat, 10 Apr 2021 13:26:49 +0100Collected Evidence: Collected Evidence: Directly plant non-woody plants: brackish/saline wetlands Thirty studies evaluated the effects, on vegetation, of directly planting emergent, non-woody plants in brackish/saline wetlands. Twenty-four studies were in the USA. There was one study in each of Canada, New Zealand, Spain, Italy and Australia. One study was a global systematic review. Four of the studies monitored different outcomes of one planting experiment in California. Two other studies used the same marsh as each other. Two studies shared some plots with each other. VEGETATION COMMUNITY Community composition (1 study): One replicated, site comparison study around fresh/brackish lakes in Australia reported that as planted rush stands aged, their near-shore plant community became more similar to that behind mature natural rush stands. Overall richness/diversity (3 studies): One controlled study on a brackish sandflat in the USA reported that an area planted with wetland herbs contained more plant species, after eight years, than an adjacent unplanted area. One replicated, site comparison study around fresh/brackish lakes in Australia found that the near-shore vegetation behind >8-year-old planted rush stands and mature natural stands contained a similar number of plant species. One study of a fresh/brackish/saline marsh in Italy simply quantified plant species richness for up to 13 years after planting herbs (along with other interventions). VEGETATION ABUNDANCE Overall abundance (4 studies): Two site comparison studies (one replicated) of brackish/saline marshes in the USA reported that areas planted with herbs (sometimes along with other interventions) contained less vegetation, after 2–3 growing seasons, than nearby natural marshes. This was true for biomass and cover. One replicated, site comparison study around fresh/brackish lakes in Australia found that the density of near-shore vegetation behind older planted rush stands was similar to that behind mature natural stands. One replicated, randomized, paired, controlled study in an estuary in the USA reported that plots planted with salt marsh vegetation contained more vegetation biomass than unplanted plots, after three growing seasons. Individual species abundance (18 studies): Eighteen studies quantified the effect of this action on the abundance of individual plant species. Four studies in the USA compared the abundance of plant species in planted and unplanted areas. Two replicated studies found that planted herb species were typically more abundant in planted than unplanted plots, after 2–4 growing seasons. One replicated, paired, controlled study reported that there were fewer common reed Phragmites australis stems in plots planted with other wetland herbs (and shrubs) than in unplanted plots, after 1–3 years. One replicated, randomized, controlled study reported species-specific effects of planted individuals on recruitment of conspecific seedlings. Nine studies in the USA and Australia compared the abundance of herb species where they had been planted to their abundance in natural brackish/saline marshes. Results varied between studies, species, metrics and time since planting. One before-and-after study of an intertidal site in the USA reported greater abundance of smooth cordgrass Spartina alterniflora over five years after planting (along with other interventions) than before. Seven studies (six replicated) in brackish/saline marshes in the USA and Canada simply quantified the abundance of individual species over 1–3 growing seasons after they were planted (sometimes along with other interventions). VEGETATION STRUCTURE Overall structure (2 studies): One replicated, randomized, paired, controlled, site comparison study in a salt marsh in the USA found that plots planted with herbs contained more canopy layers than unplanted plots after 2–4 growing seasons. One replicated, site comparison study around fresh/brackish lakes in Australia reported that as planted rush stands aged, their width increased – becoming more similar to mature natural stands. Height (11 studies): Three replicated studies in salt marshes in the USA found that vegetation in areas planted with herbs was at least as tall as vegetation in unplanted areas, 2–4 growing seasons after planting. Of six site comparison studies that compared vegetation height in planted and natural marshes (sometimes along with other interventions), three studies in the USA reported that vegetation was shorter in planted marshes after 2–5 growing seasons. Two studies in the USA and Australia found that vegetation was typically a similar height in planted and natural marshes after 2–11 years. One study in the USA found that vegetation was taller in planted marshes after three growing seasons. Four replicated studies in brackish/saline marshes in the USA simply quantified the height of herbs over 1–5 growing seasons after they were planted; in three of these studies, the average height increased over time. OTHER Survival (17 studies): Seventeen studies (including 13 replicated and one systematic review) in the USA, Canada, New Zealand, Spain and multiple countries quantified survival rates of individual herbs planted (or sown) in brackish/saline wetlands. Survival rates ranged from 0% to 100% after 20 days to 2 years. Four studies in the USA, New Zealand and multiple countries reported 0% survival or absence of planted herb species, in at least some cases, after nine months to eight years. Proposed factors affecting survival included elevation/water levels, age of planted individuals, treatment with root dip, planting date, soil pH, damage by waterbirds, salinity and sediment organic matter content. Growth (2 studies): Two studies monitored true growth of individual herbs (rather than changes in average height of survivors). One replicated study in a brackish marsh in the USA reported that in 8 of 10 cases, rushes/bulrushes grew in both height and circumference over the second year after planting. One replicated study in an estuary in Spain reported growth of planted small cordgrass Spartina maritima and glasswort Sarcocornia perennis over the year after planting. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3257https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3257Sat, 10 Apr 2021 13:27:23 +0100Collected Evidence: Collected Evidence: Directly plant trees/shrubs: freshwater wetlands Seventeen studies evaluated the effects, on vegetation, of directly planting trees/shrubs in freshwater wetlands. Fifteen studies were in the USA. Two were in Australia. Two of the studies took place in the same site, but used different experimental set-ups. VEGETATION COMMUNITY Community composition (2 studies): Two replicated studies of freshwater wetlands in the USA found that planting trees/shrubs (sometimes along with other interventions) had no significant effect on aspects of plant community composition, after 1–11 years. Specifically, planted and unplanted wetlands had a similar proportion of species in different plant groups and relative abundance of different plant groups. Overall richness/diversity (1 study): One replicated, randomized, controlled, before-and-after study in depressional wetlands in the USA found that wetlands sparsely planted with tree seedlings contained a similar number of plant species, after 1–4 years, to unplanted wetlands. VEGETATION ABUNDANCE Overall abundance (2 studies): Two replicated studies (one site comparison; one randomized, controlled, before-and-after) of freshwater wetlands in the USA found that planting trees/shrubs (sometimes along with other interventions) had no significant effect on overall vegetation cover (both ground and canopy, separately or combined) after 1–11 years. Herb abundance (1 study): One study in a former firing range in the USA simply quantified herb cover approximately 1–2 years after reprofiling the site and planting trees/shrubs. Tree/shrub abundance (1 study): One study in a former firing range in the USA simply quantified woody plant cover approximately 1–2 years after reprofiling the site and planting trees/shrubs. VEGETATION STRUCTURE Visual obstruction (1 study): One replicated, site comparison study in the USA found that swamps created by planting trees/shrubs (after reprofiling) had less horizontal vegetation cover, after 7–11 years, than nearby swamps recovering naturally from logging. Height (6 studies): One replicated, site comparison study in the USA found that swamps created by planting trees/shrubs (after reprofiling) contained shorter woody vegetation, after 7–11 years, than nearby swamps recovering naturally from logging. Herbaceous vegetation, however, was of similar height. Five studies (four replicated) in freshwater wetlands in the USA simply quantified the height of trees and shrubs over 1–6 growing seasons after they were planted; in four of these studies, the average height typically increased over time. Diameter (1 study): One study in a freshwater wetland in the USA reported an increase in the diameter of surviving trees over the year after they were planted. Basal area (1 study): One replicated, site comparison study in the USA found that swamps created by planting trees/shrubs (after reprofiling) had a lower vegetation basal area, after 7–11 years, than nearby swamps recovering naturally from logging. OTHER Survival (15 studies): Fifteen studies (including eight replicated) in the USA and Australia quantified survival of individual trees/shrubs planted in freshwater wetlands. Survival rates ranged from 0% to 100% after 4–66 months. Seven of the studies (including six replicated) in the USA and Australia reported 0% survival of planted vegetation in at least some cases, after 1–6 growing seasons. Proposed factors affecting survival included elevation/water levels, the season of planting, protection from herbivores, root pruning, extreme weather, and if/how invasive vegetation was removed before planting. Growth (2 studies): Two studies monitored true growth of individual trees/shrubs (rather than changes in average height of survivors). The two studies, in freshwater wetlands in the USA, reported that planted trees grew in diameter and/or height over their first 1–2 growing seasons. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3258https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3258Sat, 10 Apr 2021 13:27:32 +0100Collected Evidence: Collected Evidence: Directly plant trees/shrubs: brackish/saline wetlands Forty-seven studies evaluated the effects, on vegetation, of directly planting trees/shrubs in brackish/saline wetlands. Forty-four studies involved planting mangroves or other coastal swamp trees: 20 in Asia, seven in Central America, six in Africa, four in North America, four in South America, two in Oceania and one globally. Three studies involved planting shrubs in the USA or Spain. There was overlap in the sites used in two studies. One systematic review included several of the other summarized studies. VEGETATION COMMUNITY Overall extent (3 studies): Two before-and-after studies in India and South Africa reported that the area of mangrove forest was greater 6–42 years after planting mangrove trees (sometimes along with other interventions) than in the years before. One study in Sri Lanka simply quantified the area of mangrove vegetation present 8–10 years after planting seedlings (and propagules). Tree/shrub richness/diversity (6 studies): Three site comparison studies in the USA, Mexico and Brazil reported that where mangrove forests developed after planting trees (sometimes along with other interventions), they contained a similar number of tree species to mature and/or naturally regenerating forests after 10–30 years. One site comparison study in Vietnam reported that after 14–34 years, a planted mangrove forest contained more tree species than a (slightly older) naturally regenerated forest. One replicated, paired, before-and-after, site comparison study in Kenya reported that planted mangrove forest contained fewer adult tree species than mature natural forest after five years, but more species of seedling. One study in a former shrimp pond in Thailand simply reported the number of unplanted tree species that had colonized six years after planting (along with other interventions). VEGETATION ABUNDANCE Tree/shrub abundance (9 studies): Three replicated, site comparison studies of coastal sites in the Philippines, the USA and Brazil reported that where mangrove forests developed after planting trees (sometimes along with other interventions), woody vegetation was typically more dense than in mature natural forests and/or naturally regenerating forests. Two site comparison studies in Kenya and Vietnam found that tree abundance (density and biomass) was similar in planted and natural mangroves after 5–34 years. One site comparison study in Mexico reported that a planted mangrove forest contained fewer trees than pristine natural forests after 12 years. Two site comparison studies in the Philippines reported mixed results according to time since planting and site. One study in Thailand simply quantified the abundance of mangrove trees six years after planting (along with other interventions). Algae/phytoplankton abundance (1 study): One site comparison study in Kenya found that mangrove forests restored by planting contained a similar algal biomass, after eight years, to mature natural forests. However, mangrove forests created by planting into bare sediment contained less algal biomass than mature natural forests. Individual species abundance (7 studies): Seven studies quantified the effect of this action on the abundance of individual plant species. Four of the studies compared the abundance of woody vegetation or algae in planted mangrove forests and mature natural forests – and sometimes naturally regenerating forests (see original papers for data). One replicated, paired, controlled study in a brackish wetland in the USA reported that there were fewer common reed Phragmites australis stems in plots planted with wetland shrubs (and herbs) than in unplanted plots, after 1–3 years. One before-and-after study of an intertidal site in the USA reported greater abundance of red mangrove Rhizophora mangle over five years after planting (along with other interventions) than before. VEGETATION STRUCTURE Overall structure (3 studies): Three replicated, site comparison studies of coastal sites in the Kenya, the USA and the Philippines reported that where mangrove forests developed after planting trees (sometimes along with other interventions), their overall structure differed from mature natural forests for up to 50 years. Height (18 studies): Four site comparison studies (three replicated, three paired) of coastal sites in Kenya, the USA, Brazil and the Philippines reported that where mangrove forests developed after planting trees (sometimes along with other interventions), the vegetation was shorter than in mature and naturally regenerating forests after 5–30 years. One site comparison study in Mexico reported that planted mangrove forests contained taller trees than pristine natural forests after 12 years. Fourteen studies (four replicated) in Asia, Central/South America, Africa and North America simply quantified the height of mangrove trees for up to six years after they were planted; in 13 of these studies, the average height increased over time. Diameter (7 studies): Two site comparison studies in Mexio and Vietnam reported that tree diameters were similar in planted and natural mangroves after 12–34 years. In contrast, two site comparison studies in Brazil and the Philippines reported that planted mangroves contained thinner tree stems than mature natural mangroves after 7–12 years. The study in Brazil also reported that stem diameters were thinner than in naturally regenerating areas. Three studies in India and Nigeria simply quantified the diameter of mangrove trees for up to three years after they were planted; in all three studies, the average stem diameter increased over time. Basal area (3 studies): Two site comparison studies (one also replicated, paired, before-and-after) in Kenya and Mexico reported that planted mangrove forests had a smaller basal area than mature natural forests after 5–12 years. One replicated, site comparison study in the USA reported that where mangrove forests developed after planting trees (along with other interventions), their basal area was similar to mature natural forests after 17–30 years. OTHER Survival (37 studies): Thirty-six studies (including one review and one systematic review) quantified survival rates of individual trees/shrubs planted in brackish/saline wetlands. Survival rates ranged from 0% to 100% after 15 days to 21 years. The studies were of mangroves in North America, Central/South America, Asia, Africa, Oceania or globally, and of shrubs in the USA or Spain. Six studies reported 100% survival in some cases. Eleven studies reported 0% survival or absence of planted species in some cases. In six studies, survival of planted seedlings was not distinguished from survival of seeds or propagules. Proposed factors affecting survival included elevation/water levels, exposure to wind/waves, soil properties, sediment deposition, oyster/barnacle colonization, salinity, use of guidance and post-planting care. Growth (9 studies): Nine studies monitored true growth of individual trees/shrubs (rather than changes in average height of survivors). The nine studies, in Colombia, the USA, the Philippines, Brazil and China, reported that planted trees/shrubs typically grew, over periods from 40 days to 50 years. One replicated study in the USA reported that planted seedlings grew less quickly than naturally colonizing seedlings. One replicated, site comparison study in the Philippines found that growth rates of trees in planted mangroves became more similar to those in mature natural mangroves over time. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3259https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3259Sat, 10 Apr 2021 13:27:43 +0100Collected Evidence: Collected Evidence: Disturb soil/sediment surface before planting non-woody plants: freshwater wetlandsWe found no studies that evaluated the effects, on vegetation, of disturbing the surface of freshwater wetlands before planting emergent, non-woody plants.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3292https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3292Sun, 11 Apr 2021 07:56:39 +0100Collected Evidence: Collected Evidence: Disturb soil/sediment surface before planting non-woody plants: brackish/saline wetlands Two studies evaluated the effects, on vegetation, of disturbing the surface of brackish/saline wetlands before planting emergent, non-woody plants. Both studies were in the USA. VEGETATION COMMUNITY   VEGETATION ABUNDANCE Individual plant abundance (1 study): One study quantified the effect of this action on the abundance of individual plant species. The replicated, randomized, paired, controlled study in a salt marsh in the USA found that tilling sediment before planting California cordgrass Spartina foliosa had no significant effect on its biomass or density after two growing seasons, but did reduce its biomass after one growing season. VEGETATION STRUCTURE Height (1 study): One replicated, randomized, paired, controlled study in a salt marsh in the USA found that tilling sediment before planting California cordgrass Spartina foliosa had no significant effect on its height after 1–2 growing seasons. Individual plant size (1 study): One replicated, randomized, paired, controlled study on estuarine sediment in the USA found that the average size of planted salt marsh plants was similar, after 1–2 years, in tilled and untilled plots. Size was reported as an index incorporating plant height and lateral extent. OTHER Survival (1 study): One replicated, randomized, paired, controlled study on estuarine sediment in the USA found that survival rates of planted salt marsh plants were similar, over 1–2 years, in tilled and untilled plots. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3293https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3293Sun, 11 Apr 2021 07:56:47 +0100Collected Evidence: Collected Evidence: Disturb soil/sediment surface before planting trees/shrubs: freshwater wetlandsWe found no studies that evaluated the effects, on vegetation, of disturbing the surface of freshwater wetlands before planting trees/shrubs.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3294https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3294Sun, 11 Apr 2021 07:57:05 +0100Collected Evidence: Collected Evidence: Disturb soil/sediment surface before planting trees/shrubs: brackish/saline wetlands One study evaluated the effects, on vegetation, of disturbing the surface of brackish/saline wetlands before planting trees/shrubs. The study was in Australia. VEGETATION COMMUNITY   VEGETATION ABUNDANCE   VEGETATION STRUCTURE Height (1 study): One replicated, controlled study on an estuarine mudflat in Australia found that ploughing the substrate before planting grey mangrove Avicennia marina propagules had no significant effect on their height after two growing seasons. OTHER Survival (1 study): One replicated, controlled study on an estuarine mudflat in Australia found that ploughing the substrate before planting grey mangrove propagules had no significant effect on their survival over two growing seasons. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3295https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3295Sun, 11 Apr 2021 07:57:16 +0100Collected Evidence: Collected Evidence: Designate protected area Four studies evaluated the overall effects, on vegetation or human behaviour, of designating protected areas involving marshes or swamps. There were two studies in China, one in Malaysia and one in Puerto Rico. VEGETATION COMMUNITY Overall extent (4 studies): Two studies (one replicated, one before-and-after) in China reported that the area of marsh, swamp or unspecified wetland in protected areas declined over 6–12 years. One replicated, site comparison study in Puerto Rico reported that protection had no clear effect on mangrove forest area, with similar changes over 25 years in protected and unprotected sites. One study of a mangrove forest in Malaysia reported that it retained at least 97% of its forest area over 98 years of protection as a forest reserve. VEGETATION ABUNDANCE   VEGETATION STRUCTURE Overall structure (2 studies): One replicated study in China reported “degradation” of the landscape structure of protected wetlands over 12 years. One before-and-after study in China reported fragmentation of wetland habitat within a protected area, but that this meant its structure became more like it had been 10–40 years previously. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3384https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3384Mon, 12 Apr 2021 08:40:54 +0100Collected Evidence: Collected Evidence: Engage local people in management/monitoring of marshes or swamps Two studies evaluated the effects, on vegetation or human behaviour, of engaging local people in management/monitoring of marshes or swamps. One study was in Senegal and one was in India. VEGETATION COMMUNITY Overall extent (1 study): One before-and-after study of a coastal wetland in India reported that after implementing a community-based restoration programme, the area of high-quality mangrove forest increased. Meanwhile, the area of degraded mangrove forest decreased. VEGETATION ABUNDANCE   VEGETATION STRUCTURE   OTHER Human behaviour (1 study): One before-and-after study of a wetland National Park in Senegal reported that after switching from authoritarian protection to community-based management, fewer fines were issued for illegal activities (including illegal settlement and uncontrolled grazing). Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3390https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3390Mon, 12 Apr 2021 11:53:33 +0100
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust