Collected Evidence: Collected Evidence: Use biocides or other chemicals to control non-native, invasive or other problematic species We found no studies that evaluated the effects of using biocides or other chemicals to control non-native, invasive or other problematic species on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2171https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2171Tue, 22 Oct 2019 12:20:31 +0100Collected Evidence: Collected Evidence: Use biological control to manage non-native, invasive or other problematic species populations We found no studies that evaluated the effects of using biological control to manage non-native, invasive or other problematic species populations on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2172https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2172Tue, 22 Oct 2019 12:21:06 +0100Collected Evidence: Collected Evidence: Remove or capture non-native, invasive or other problematic species One study examined the effects of removing or capturing non-native, invasive or other problematic species on subtidal benthic invertebrates. The study was in the South Atlantic Ocean (Brazil).   COMMUNITY RESPONSE (0 STUDIES) POPULATION RESPONSE (1 STUDY) Cnidarian abundance (1 study): One replicated, controlled, before-and-after study in the southwest Atlantic found that, regardless of the method used, removing invasive corals reduced the cover of native zoanthids. Sponge abundance (1 study): One replicated, controlled, before-and-after study in the southwest Atlantic found that the effect of removing invasive corals on the cover of native sponges varied with the removal method used. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2173https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2173Tue, 22 Oct 2019 12:23:21 +0100Collected Evidence: Collected Evidence: Use of non-native, invasive or other problematic species from populations established in the wild for recreational or commercial purposes We found no studies that evaluated the effects of using non-native, invasive or other problematic species from populations established in the wild for recreational or commercial purposes on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2174https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2174Tue, 22 Oct 2019 12:24:03 +0100Collected Evidence: Collected Evidence: Transplant/translocate ‘bioremediating’ species We found no studies that evaluated the effects of transplanting and/or translocating bioremediating species on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2175https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2175Tue, 22 Oct 2019 12:25:19 +0100Collected Evidence: Collected Evidence: Establish pollution emergency plans We found no studies that evaluated the effects of establishing pollution emergency plans on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2177https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2177Tue, 22 Oct 2019 12:28:17 +0100Collected Evidence: Collected Evidence: Limit, cease or prohibit the dumping of untreated sewage We found no studies that evaluated the effects of limiting, ceasing or prohibiting the dumping of untreated sewage on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2178https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2178Tue, 22 Oct 2019 12:29:28 +0100Collected Evidence: Collected Evidence: Limit the amount of storm wastewater overflow We found no studies that evaluated the effects of limiting the amount of storm wastewater overflow on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2181https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2181Tue, 22 Oct 2019 12:40:17 +0100Collected Evidence: Collected Evidence: Use double hulls to prevent oil spills We found no studies that evaluated the effects of using double hulls to prevent oil spills on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2182https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2182Tue, 22 Oct 2019 12:41:00 +0100Collected Evidence: Collected Evidence: Remove or clean-up oil pollution following a spill One study examined the effects of removing and cleaning-up oil pollution following a spill on subtidal benthic invertebrates. The study was in the Baltic Proper (Sweden).   COMMUNITY RESPONSE (0 STUDIES) POPULATION RESPONSE (1 STUDY) Mollusc condition (1 study): One replicated, controlled, before-and-after study in the Baltic Proper found that after cleaning-up spilled oil using high pressure hot water, crude oil content increased in mussels and did not naturally decrease over time, and was higher than in mussels from an uncleaned contaminated and a non-contaminated site. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2183https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2183Tue, 22 Oct 2019 12:43:22 +0100Collected Evidence: Collected Evidence: Set regulatory ban on marine burial of nuclear waste We found no studies that evaluated the effects of setting regulatory ban on marine burial of nuclear waste on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2184https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2184Tue, 22 Oct 2019 12:44:09 +0100Collected Evidence: Collected Evidence: Reduce aquaculture stocking densities We found no studies that evaluated the effects of reducing aquaculture stocking densities on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2186https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2186Tue, 22 Oct 2019 12:55:51 +0100Collected Evidence: Collected Evidence: Locate aquaculture systems in already impacted areas We found no studies that evaluated the effects of locating aquaculture systems in already impacted areas on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2187https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2187Tue, 22 Oct 2019 12:56:48 +0100Collected Evidence: Collected Evidence: Locate aquaculture systems in areas with fast currents We found no studies that evaluated the effects of locating aquaculture systems in areas with fast currents on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2188https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2188Tue, 22 Oct 2019 12:57:27 +0100Collected Evidence: Collected Evidence: Locate aquaculture systems in vegetated areas We found no studies that evaluated the effects of locating aquaculture systems in vegetated locations on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2189https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2189Tue, 22 Oct 2019 12:58:02 +0100Collected Evidence: Collected Evidence: Moor aquaculture cages so they move in response to changing current direction We found no studies that evaluated the effects of mooring aquaculture cages so they move in response to changing current direction on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2190https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2190Tue, 22 Oct 2019 12:58:46 +0100Collected Evidence: Collected Evidence: Improve fish food and pellets to reduce aquaculture waste production We found no studies that evaluated the effects of improving fish food and pellets to reduce aquaculture waste production on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2192https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2192Tue, 22 Oct 2019 13:02:53 +0100Collected Evidence: Collected Evidence: Reduce the amount of pesticides used in aquaculture systems We found no studies that evaluated the effects of reducing the amount of pesticides used in aquaculture systems on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2193https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2193Tue, 22 Oct 2019 13:05:17 +0100Collected Evidence: Collected Evidence: Reduce the amount of antibiotics used in aquaculture systems We found no studies that evaluated the effects of reducing the amount of antibiotics used in aquaculture systems on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2194https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2194Tue, 22 Oct 2019 13:06:02 +0100Collected Evidence: Collected Evidence: Use species from more than one level of a food web in aquaculture systems We found no studies that evaluated the effects of using species from more than one level of a food web in aquaculture systems on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2195https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2195Tue, 22 Oct 2019 13:07:07 +0100Collected Evidence: Collected Evidence: Locate artificial reefs near aquaculture systems (and vice versa) to act as biofilters We found no studies that evaluated the effects of locating artificial reefs near aquaculture systems to act as biofilters on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2196https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2196Tue, 22 Oct 2019 13:07:49 +0100Collected Evidence: Collected Evidence: Use other bioremediation methods in aquaculture We found no studies that evaluated the effects of using other bioremediation methods in aquaculture on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2197https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2197Tue, 22 Oct 2019 13:09:12 +0100Collected Evidence: Collected Evidence: Regulate the use, dosage and disposal of agrichemicals We found no studies that evaluated the effects of regulating the use, dosage and disposal of agrichemicals on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2198https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2198Tue, 22 Oct 2019 13:09:55 +0100Collected Evidence: Collected Evidence: Treat wastewater from intensive livestock holdings We found no studies that evaluated the effects of treating wastewater from intensive livestock holdings on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2199https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2199Tue, 22 Oct 2019 13:10:46 +0100Collected Evidence: Collected Evidence: Establish aquaculture to extract the nutrients from run-offs We found no studies that evaluated the effects of establishing aquaculture to extract the nutrients from run-offs on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2200https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2200Tue, 22 Oct 2019 13:11:28 +0100Collected Evidence: Collected Evidence: Create artificial wetlands to reduce the amount of pollutants reaching the sea We found no studies that evaluated the effects of creating artificial wetlands to reduce the amount of pollutants reaching the sea on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.    Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2201https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2201Tue, 22 Oct 2019 13:12:33 +0100Collected Evidence: Collected Evidence: Limit, cease or prohibit discharge of solid waste overboard from vessels We found no studies that evaluated the effects of limiting, ceasing or prohibiting discharge of solid waste overboard from vessels on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2202https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2202Tue, 22 Oct 2019 13:13:36 +0100Collected Evidence: Collected Evidence: Install stormwater traps or grids We found no studies that evaluated the effects of installing stormwater traps or grids on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2203https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2203Tue, 22 Oct 2019 13:14:36 +0100Collected Evidence: Collected Evidence: Remove litter from the marine environment We found no studies that evaluated the effects of removing litter from the marine environment on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2204https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2204Tue, 22 Oct 2019 13:15:13 +0100Collected Evidence: Collected Evidence: Use biodegradable panels in fishing pots We found no studies that evaluated the effects of using biodegradable panels in fishing pots on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2205https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2205Tue, 22 Oct 2019 13:15:49 +0100Collected Evidence: Collected Evidence: Recover lost fishing gear We found no studies that evaluated the effects of recovering lost fishing gear on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2206https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2206Tue, 22 Oct 2019 13:16:34 +0100Collected Evidence: Collected Evidence: Bury electricity cables to reduce electromagnetic fields We found no studies that evaluated the effects of burying electricity cables to reduce electromagnetic fields on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2207https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2207Tue, 22 Oct 2019 13:19:14 +0100Collected Evidence: Collected Evidence: Limit, cease or prohibit industrial and urban lighting at night We found no studies that evaluated the effects of limiting, ceasing or prohibiting industrial and urban lighting at night on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2208https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2208Tue, 22 Oct 2019 13:20:07 +0100Collected Evidence: Collected Evidence: Reduce underwater noise (other than sonar) We found no studies that evaluated the effects of reducing underwater noise on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2209https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2209Tue, 22 Oct 2019 13:20:54 +0100Collected Evidence: Collected Evidence: Limit, cease or prohibit the use of sonars We found no studies that evaluated the effects of limiting, ceasing or prohibiting the use of sonars on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2210https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2210Tue, 22 Oct 2019 13:22:25 +0100Collected Evidence: Collected Evidence: Limit, cease or prohibit the discharge of cooling effluents from power stations We found no studies that evaluated the effects of limiting, ceasing or prohibiting the use of sonars on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2211https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2211Tue, 22 Oct 2019 13:23:02 +0100Collected Evidence: Collected Evidence: Limit, cease or prohibit the discharge of waste effluents overboard from vessels We found no studies that evaluated the effects of limiting, ceasing or prohibiting the discharge of waste effluents overboard from vessels on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2212https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2212Tue, 22 Oct 2019 13:24:58 +0100Collected Evidence: Collected Evidence: Use non-toxic antifouling coatings on surfaces We found no studies that evaluated the effects of using non-toxic antifouling coatings on surfaces on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2213https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2213Tue, 22 Oct 2019 13:25:37 +0100Collected Evidence: Collected Evidence: Restore habitats and/or habitat-forming (biogenic) species following extreme events We found no studies that evaluated the effects of restoring habitats and/or habitat-forming species following extreme events on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2216https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2216Tue, 22 Oct 2019 13:34:55 +0100Collected Evidence: Collected Evidence: Manage climate-driven range extensions of problematic species We found no studies that evaluated the effects of managing climate-driven range extensions of problematic species on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2217https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2217Tue, 22 Oct 2019 13:35:31 +0100Collected Evidence: Collected Evidence: Transplant/release climate change-resistant captive-bred or hatchery-reared individuals to re-establish or boost native populations We found no studies that evaluated the effects of transplanting/releasing mate change-resistant captive-bred or hatchery-reared individuals on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2218https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2218Tue, 22 Oct 2019 13:36:04 +0100Collected Evidence: Collected Evidence: Transplant captive-bred or hatchery-reared individuals of habitat-forming (biogenic) species that are resistant to climate change     We found no studies that evaluated the effects of transplanting captive-bred or hatchery-reared individuals of habitat-forming/biogenic species that are resistant to climate change on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2219https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2219Tue, 22 Oct 2019 13:36:37 +0100Collected Evidence: Collected Evidence: Limit, cease or prohibit the degradation and/or removal of carbon sequestering species and/or habitats We found no studies that evaluated the effects of limiting, ceasing or prohibiting the degradation and/or removal of carbon sequestering species and/or habitats on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2220https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2220Tue, 22 Oct 2019 13:37:25 +0100Collected Evidence: Collected Evidence: Promote natural carbon sequestration species and/or habitats We found no studies that evaluated the effects of promoting natural carbon sequestration species and/or habitats on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2221https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2221Tue, 22 Oct 2019 13:38:01 +0100Collected Evidence: Collected Evidence: Create a Marine Protected Area or set levels of legal protection where natural climate refugia occur to further promote the persistence and recovery of species facing climate change We found no studies that evaluated the effects of creating a marine protected area or setting levels of legal protection where natural climate refugia occur to further promote the persistence and recovery of species facing climate change on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2222https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2222Tue, 22 Oct 2019 13:39:06 +0100Collected Evidence: Collected Evidence: Designate a Particularly Sensitive Sea Area (PSSA) to regulate impactful maritime activities We found no studies that evaluated the effects of designating a Particularly Sensitive Sea Area on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2223https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2223Tue, 22 Oct 2019 13:59:48 +0100Collected Evidence: Collected Evidence: Designate a Marine Protected Area and prohibit commercial fishing Three studies examined the effects of prohibiting commercial fishing in marine protected areas on subtidal benthic invertebrates. Two studies were in the South Pacific Ocean (New Zealand), and one in the Caribbean Sea (Mexico).   COMMUNITY RESPONSE (0 STUDIES) POPULATION RESPONSE (3 STUDIES) Crustacean abundance (2 studies): Two replicated studies (one before-and-after, one site comparison) in the South Pacific Ocean found that after implementing a marine park prohibiting commercial fishing but allowing the recreational harvest of lobsters, lobster abundance inside the park did not increase over the 12 years after implementation, and abundance was similar inside the park and outside where fishing occurred. Crustacean condition (3 studies): One replicated, before-and-after study in the South Pacific Ocean found that over the 12 years after implementing a marine park prohibiting commercial fishing but allowing the recreational harvest of lobsters, the biomass of legal-size lobsters inside the park did not increase. One of two site comparison studies (one replicated) in the South Pacific Ocean and the Caribbean Sea found bigger lobsters in an area closed to commercial fishing for an unspecified amount of time compared to a fished area. The second study found that 10 years after implementing a marine park prohibiting commercial fishing but allowing the recreational harvest of lobsters, lobster size was similar inside the park and outside where fishing occurred. BEHAVIOUR (1 STUDY) Crustacean behaviour (1 study): One site comparison study in the Caribbean Sea found that 80% of the lobster population occurring in a protected area (year of designation unspecified) where commercial fishing was prohibited remained in the unfished area, and thus remained protected. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2225https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2225Tue, 22 Oct 2019 14:59:02 +0100Collected Evidence: Collected Evidence: Designate a Marine Protected Area and prohibit static fishing gear We found no studies that evaluated the effects of designating a Marine Protected Area and prohibiting static fishing gear on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2231https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2231Tue, 22 Oct 2019 15:39:17 +0100Collected Evidence: Collected Evidence: Designate a Marine Protected Area and limit the density of traps We found no studies that evaluated the effects of designating a Marine Protected Area and limiting the density of traps on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2232https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2232Tue, 22 Oct 2019 15:39:58 +0100Collected Evidence: Collected Evidence: Designate a Marine Protected Area and only allow hook and line fishing One study examined the effects of allowing only hook and line fishing in marine protected areas on subtidal benthic invertebrate populations. The study was in the Skagerrak (Norway).   COMMUNITY RESPONSE (0 STUDIES) POPULATION RESPONSE (1 STUDY) Crustacean abundance (1 study): One replicated, controlled, before-and-after study in the Skagerrak found that sites inside a protected area only allowing hook and line fishing had greater increases in lobster abundance over the four years after the area was designated compared to unprotected fully fished sites. Crustacean condition (1 study): One replicated, controlled, before-and-after study in the Skagerrak found that sites inside a protected area only allowing hook and line fishing had greater increases in lobster size over the four years after the area was designated compared to unprotected fully fished sites. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2233https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2233Tue, 22 Oct 2019 15:41:16 +0100Collected Evidence: Collected Evidence: Designate a Marine Protected Area and limit the number of fishing vessels We found no studies that evaluated the effects of designating a Marine Protected Area and limiting the number of fishing vessels on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2234https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2234Tue, 22 Oct 2019 15:41:44 +0100Collected Evidence: Collected Evidence: Designate a Marine Protected Area and set a no-anchoring zone We found no studies that evaluated the effects of designating a Marine Protected Area and setting a no-anchoring zone on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2235https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2235Tue, 22 Oct 2019 15:42:16 +0100Collected Evidence: Collected Evidence: Designate a Marine Protected Area and prohibit the harvesting of scallops We found no studies that evaluated the effects of designating a Marine Protected Area and prohibiting the harvest of scallops on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2236https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2236Tue, 22 Oct 2019 15:42:59 +0100Collected Evidence: Collected Evidence: Designate a Marine Protected Area and prohibit the harvesting of conch One study examined the effects of prohibiting the harvesting of conch in marine protected areas on their populations and/or other subtidal benthic invertebrates. The study was in the North Atlantic Ocean (British Overseas Territories).   COMMUNITY RESPONSE (0 STUDIES) POPULATION RESPONSE (1 STUDY) Mollusc abundance (1 study): One site comparison study in the North Atlantic Ocean found that a marine protected area prohibiting the commercial harvest of conch had more conch after five years compared to a fished area. Mollusc condition (1 study): One site comparison study in the North Atlantic Ocean found that a marine protected area prohibiting the commercial harvest of conch had smaller adult conch after five years compared to a fished area. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2237https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2237Tue, 22 Oct 2019 15:44:24 +0100Collected Evidence: Collected Evidence: Designate a Marine Protected Area and prohibit the harvesting of sea urchins Two studies examined the effects of prohibiting the harvest of sea urchins in marine protected areas on their populations and/or other subtidal benthic invertebrates. Both studies were in the North Pacific Ocean (USA).   COMMUNITY RESPONSE (0 STUDIES) POPULATION RESPONSE (2 STUDIES) Echinoderm abundance (1 study): One replicated, site comparison study in the North Pacific Ocean found that marine protected areas prohibiting the harvest of red sea urchins had higher adult sea urchin biomass six to 33 years after their designations, compared to harvested areas. Echinoderm reproductive success (1 study): One replicated, site comparison study in the North Pacific Ocean found that marine protected areas prohibiting the harvest of red sea urchins had higher urchin population reproductive biomasses, but similar reproductive indices six to 33 years after their designations, compared to harvested areas. Echinoderm condition (1 study): One replicated, site comparison study in the North Pacific Ocean found that marine protected areas prohibiting the harvest of red sea urchins had bigger adult sea urchins six to 33 years after their designations, compared to harvested areas. Mollusc abundance (1 study): One replicated, site comparison study in the North Pacific Ocean found that marine protected areas prohibiting the harvest of red sea urchins (year of designation unspecified) had more juvenile red abalone and juvenile flat abalone compared to harvested areas, and that juvenile abalone abundance was positively related to sea urchin abundance. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2238https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2238Wed, 23 Oct 2019 08:12:41 +0100Collected Evidence: Collected Evidence: Designate a Marine Protected Area without setting management measures, usage restrictions, or enforcement We found no studies that evaluated the effects of designating a Marine Protected Area without setting management measures, usage restrictions, or enforcement on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2241https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2241Wed, 23 Oct 2019 08:38:29 +0100Collected Evidence: Collected Evidence: Establish community-based fisheries management One study examined the effects of establishing community-based fisheries management on subtidal benthic invertebrate populations. The study was in the Foveaux Straight (New Zealand).   COMMUNITY RESPONSE (0 STUDIES) POPULATION RESPONSE (1 STUDY) Mollusc abundance (1 study): One replicated, site comparison study in the Foveaux Straight found that a customary fisheries area where management was community-based had more New Zealand scallops compared to a protected area prohibiting all fishing and an area allowing recreational harvest. Mollusc condition (1 study): One replicated, site comparison study in the Foveaux Straight found that a customary fisheries area where management was community-based, tended to have smaller New Zealand scallops compared to a protected area prohibiting all fishing and an area allowing recreational harvest. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2242https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2242Wed, 23 Oct 2019 08:39:43 +0100Collected Evidence: Collected Evidence: Engage with stakeholders when designing Marine Protected Areas We found no studies that evaluated the effects of engaging with stakeholders when designating a Marine Protected Area on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2243https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2243Wed, 23 Oct 2019 08:41:40 +0100Collected Evidence: Collected Evidence: Transplant captive-bred or hatchery-reared habitat-forming (biogenic) species We found no studies that evaluated the effects of transplanting captive-bred or hatchery-reared habitat-forming species on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2244https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2244Wed, 23 Oct 2019 08:42:38 +0100Collected Evidence: Collected Evidence: Restore coastal lagoons Three studies examined the effects restoring coastal lagoons on subtidal benthic invertebrate populations. One study was in the Chilika lagoon (India), and two in East Harbor lagoon (USA).   COMMUNITY RESPONSE (3 STUDIES) Crustacean richness/diversity (1 study): One before-and-after study in Chilika lagoon found that following hydrological restoration total crustacean species richness decreased, but changes varied with species groups (decreases in prawn and crab species; increases in lobster species). The lagoon also hosted new species not found before. Mollusc richness/diversity (2 studies): Two studies in East Harbor lagoon found that following hydrological restoration molluscs recolonised the lagoon and their species richness increased in the first three years but later decreased over the following six. POPULATION RESPONSE (3 STUDIES) Crustacean abundance (1 study): One before-and-after study in Chilika lagoon found that following hydrological restoration abundances of prawns and crabs increased. Mollusc abundance (2 studies): Two studies in East Harbor lagoon found that following hydrological restoration molluscs recolonised the lagoon and their total abundance increased in the first three years, but later decreased over the following six. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2250https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2250Wed, 23 Oct 2019 09:48:44 +0100Collected Evidence: Collected Evidence: Use green engineering techniques on artificial structures - Modify rock dump to make it more similar to natural substrate We found no studies that evaluated the effects of modifying rock dump to make it more similar to natural substrate on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2254https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2254Wed, 23 Oct 2019 10:03:28 +0100Collected Evidence: Collected Evidence: Use green engineering techniques on artificial structures - Cover subsea cables with artificial reefs We found no studies that evaluated the effects of covering subsea cables with artificial reefs on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2255https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2255Wed, 23 Oct 2019 10:04:11 +0100Collected Evidence: Collected Evidence: Use green engineering techniques on artificial structures - Cover subsea cables with materials that encourage the accumulation of natural sediments We found no studies that evaluated the effects of covering subsea cables with materials that encourage the accumulation of natural sediments on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2256https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2256Wed, 23 Oct 2019 10:04:53 +0100Collected Evidence: Collected Evidence: Provide artificial shelters Five studies examined the effects of providing artificial shelters on subtidal benthic invertebrates. Three studies were in the Caribbean Sea (Mexico); one in Florida Bay and one in the Florida Keys (USA).   COMMUNITY RESPONSE (0 STUDIES) POPULATION RESPONSE (2 STUDIES) Lobster abundance (2 studies): Two replicated, controlled, before-and-after studies in the Caribbean Sea found that abundance of lobsters either increased in plots with artificial shelters but not in plots without, or increased in all plots but more so in plots with artificial shelters than those without. Lobster condition (1 study): One replicated, controlled, before-and-after study in the Caribbean Sea found that lobsters in plots with artificial shelters were bigger than in plots without. BEHAVIOUR (3 STUDIES) Use (3 studies): Three replicated studies (two controlled) in Florida Bay, the Florida Keys, and the Caribbean Sea, found that artificial shelters were occupied by lobsters and molluscs, that occupancy by lobsters varied with artificial shelter designs, that lobsters occupied artificial shelters more than natural ones (crevices), and that lobsters occupying artificial shelters were larger, had greater nutritional condition, and had similar sex ratio and survival rate, compared to lobsters occupying natural shelters. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2257https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2257Wed, 23 Oct 2019 10:13:10 +0100Collected Evidence: Collected Evidence: Place anthropogenic installations (e.g: windfarms) in an area such that they create artificial habitat and reduce the level of fishing activity We found no studies that evaluated the effects of placing anthropogenic installations in an area such that they reduce the level of fishing activity on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2261https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2261Wed, 23 Oct 2019 10:51:55 +0100Collected Evidence: Collected Evidence: Pay monetary compensation for habitat damage remediation We found no studies that evaluated the effects of paying monetary compensation for habitat damage remediation on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2263https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2263Wed, 23 Oct 2019 10:58:53 +0100Collected Evidence: Collected Evidence: Set recreational catch quotas We found no studies that evaluated the effects of setting recreational catch quotas on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2273https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2273Wed, 23 Oct 2019 12:49:13 +0100Collected Evidence: Collected Evidence: Establish size limitations for the capture of recreational species We found no studies that evaluated the effects of establishing size limitations for the capture of recreational species on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2274https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2274Wed, 23 Oct 2019 12:49:38 +0100Collected Evidence: Collected Evidence: Tag species to prevent illegal fishing or harvesting One study examined the effects of tagging species to prevent illegal fishing or harvesting on subtidal benthic invertebrates. The study examined the effects on the Californian abalone fishery (USA).   COMMUNITY RESPONSE (0 STUDIES) POPULATION RESPONSE (0 STUDIES) BEHAVIOURS (1 STUDY) Behaviour-change (1 study): One before-and-after study in California found no significant reduction in non-compliance with daily quotas of abalones after introducing tagging regulations. OTHER (1 STUDY) Illegal catch (1 study): One before-and-after study in California found no significant reduction in illegal takes of abalones after introducing tagging regulations. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2275https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2275Wed, 23 Oct 2019 12:50:46 +0100Collected Evidence: Collected Evidence: Remove/control non-native invertebrates One study evaluated the effects on mammals of removing or controlling non-native invertebrates. This study was in the USA. COMMUNITY RESPONSE (0 STUDIES) POPULATION RESPONSE (1 STUDY) Abundance (1 study): A replicated, controlled, before-and-after study the USA found that after the control of red imported fire ants, capture rates of northern pygmy mice increased. BEHAVIOUR (0 STUDIES)Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2501https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2501Thu, 04 Jun 2020 15:42:11 +0100Collected Evidence: Collected Evidence: Establish temporary fishery closures Five studies examined the effects of establishing temporary fishery closures on marine fish populations. Two studies were in the North Atlantic Ocean (Canada, UK) and one study was in each of the North Sea (UK), the Philippine Sea (Palau) and the Mediterranean Sea (Spain).  COMMUNITY RESPONSE (0 STUDIES) POPULATION RESPONSE (1 STUDY) Abundance (1 study): One before-and-after, site comparison study in the Atlantic Ocean found no increase in the biomass of the spawning stock of cod following a temporary fishery closure compared to fished areas over nine years. Survival (1 study): One before-and-after, site comparison study in the Atlantic Ocean found no change in the survival of cod following a temporary fishery closure compared to fished areas over nine years. Condition (1 study): One before-and-after, site comparison study in the Atlantic Ocean found no change in the length composition of cod following a temporary fishery closure, compared to fished areas over nine years. BEHAVIOUR (1 STUDY) Use (1 study): A study in the Northeast Atlantic Ocean reported that over five years tagged adult cod spent nearly a third of time inside a seasonally closed cod spawning area during implementation, and were thus given increased protection from any gears targeting bottom-dwelling fish during the spawning period. OTHER (4 STUDIES) Reduction of fishing effort (1 study): One replicated, controlled, before-and-after study in the North Sea found that fixed temporary closures had little effect on fishing effort for cod, but real-time area closures reduced the annual amount of cod caught (retained and discarded). Commercial catch abundance (3 studies): One of two replicated (one controlled, one before-and-after) studies in the Philippine Sea and Mediterranean Sea found that during a temporary closure of a grouper fishery, spear fisher catch numbers of other fish groups (herbivores) increased, indicating they were being targeted more compared to the open season. The other study found that in targeted fisheries over 10 years, catch rates of red mullet and total catch (fish and invertebrates combined), but not European hake, increased after temporary closures, compared to before. One before-and-after, site comparison study in the Atlantic Ocean found no change over nine years in cod catches following a temporary fishery closure compared to fished areas. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2664https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2664Wed, 18 Nov 2020 16:03:49 +0000Collected Evidence: Collected Evidence: Cease or prohibit mobile fishing gears that catch bottom (demersal) species and are dragged across the seafloor Ten studies examined the effects of ceasing or prohibiting mobile fishing gears that catch bottom (demersal) species and are dragged across the seafloor on marine fish populations. Two studies were in each of the North Atlantic Ocean (Canada, Portugal), the Indian Ocean (Tasmania, Kenya) and the Mediterranean Sea. One study was in each of the North Sea (Denmark), the Arafura Sea (Australia), the Coral Sea (Australia) and the Gulf of Mexico (USA). COMMUNITY RESPONSE (3 STUDIES)  Richness/diversity (3 studies): Two of three site comparison studies (one replicated and randomized, and one before-and-after) in the North Sea, Indian Ocean and Gulf of Mexico found that the number of fish species, the fish assemblage and overall species richness and diversity (fish and invertebrates combined) varied between areas with different exposures to bottom trawling, and was also dependent on bottom depth and habitat type. The other study reported no effect of closing an area to all towed bottom fishing gears on the species richness of bottom-dwelling fish after 10 years and compared to areas open to trawling.  POPULATION RESPONSE (8 STUDIES) Abundance (5 studies): Two of three replicated studies (one controlled and before-and-after, and two site comparison) and one of two before-and-after studies (one site comparison) in the North Sea, Arafura Sea, North Atlantic Ocean and the Mediterranean Sea found that ceasing or prohibiting fishing with towed bottom gears resulted in higher total fish biomass after 15 years, higher biomass of adult red mullet after 14 years and increased abundances of long-snouted, but not short-snouted, seahorses after one year, compared to openly fished areas. The other two studies found that a ban on towed bottom fishing gears for five and 10 years had no effect on the abundance of bottom-dwelling fish species after closure compared to before, or the abundance and biomass of fish and invertebrate species (combined) compared to areas open to towed gears/trawling. Reproductive success (2 studies): One of two before-and-after studies (one site comparison) in the North Atlantic Ocean and Mediterranean Sea found that after the closure of an area to all bottom-towed fishing gears for 14 years, recruitment of young red mullet had increased. The other study found that an area closed to bottom trawling did not have higher recruitment of young haddock seven years after closure and compared to a trawled area. Survival (1 study): One before-and-after, site comparison study in the North Atlantic Ocean found that closing an area to bottom trawling did not increase the survival of young haddock seven years after closure, and compared to a trawled area. Condition (5 studies): One of four replicated studies (two site comparison and one randomized, site comparison) and one before-and-after study in the Arafura Sea, Mediterranean Sea, Gulf of Mexico and the Indian Ocean found that areas prohibiting bottom towed fishing gears had larger sizes of adult red mullet 14 years after closure than before. Two studies found that the effect on fish size of closing areas to towed bottom gears for 3–6 years or areas with no bottom fishing activity varied between individual fish groups and with habitat type, compared to fished areas. The other two found that areas closed to bottom trawling for five years and 15 years had no effect on the overall size of fish and invertebrate species combined or average fish weight, compared to trawled areas. BEHAVIOUR (0 STUDIES) OTHER (2 STUDIES) Reduce unwanted catch (1 study): One randomized, replicated, site comparison study in the Coral Sea found no reduction in the biomass of non-commercial unwanted catch (fish and invertebrate discard) or in the number of ‘common’ and ‘rare’ discard species in areas closed to trawling for seven years compared to trawled areas. Catch abundance (1 study): One replicated, before-and-after study in the Indian Ocean found that areas prohibiting beach and all other seine nets for 3–6 years found overall fish catch rates were higher, and catch rates of individual fish groups were variable, compared to unrestricted areas. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2673https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2673Fri, 20 Nov 2020 12:12:24 +0000Collected Evidence: Collected Evidence: Cease or prohibit all types of fishing in a marine protected area Seventy-nine studies examined the effects of ceasing or prohibiting all types of fishing in a marine protected area on fish populations. Fifteen studies were in the Indian Ocean (Kenya, Tanzania, South Africa, Mozambique, Madagascar, multiple African countries, Australia). Twelve studies were in the Mediterranean Sea (Spain, France, Italy). Ten studies were in the Pacific Ocean (New Zealand, USA, Hawaii, New Caledonia, Costa Rica, Tonga, Vanuatu, Solomon Islands). Seven studies were in each of the Coral Sea (Australia, Vanuatu), the Tasman Sea (New Zealand, Australia) and the Atlantic Ocean (Brazil, USA, Puerto Rico, Argentina, South Africa, UK, Canary Islands, Portugal, Turks and Caicos Islands). Four studies were in the Philippine Sea (Philippines). Three studies were in the Caribbean Sea (Belize, Puerto Rico). One study was in each of the Gulf of Mexico (USA), the Java Sea (Indonesia), the Pacific and Indian Oceans (multiple countries), the Sulu Sea (Malaysia) and the North Sea (Norway). Six studies were reviews of marine reserves (New Zealand, Latin America/Caribbean, regions unspecified and across the world).  COMMUNITY RESPONSE (26 STUDIES)  Community composition (7 studies): Seven site comparison studies (two replicated, and one before-and-after) in the Mediterranean Sea, Indian Ocean, Philippine Sea and the Atlantic Ocean found that protected areas where all fishing had been prohibited for between three and 16 years, had a different fish community composition, compared to fished areas.  Richness/diversity (22 studies): Fourteen of 20 site comparison studies (eight replicated, one replicated and paired, and one before-and-after) in the Indian Ocean, Mediterranean Sea, Philippine Sea, Tasman Sea, Atlantic Ocean, Caribbean Sea, Coral Sea and the Pacific Ocean, found that marine protected areas that had prohibited all fishing for between one to more than 25 years, had higher fish species/richness compared to fished areas. Six studies found similar fish species/richness between one and 20 years after all fishing was banned in protected areas, compared to fished areas. One systematic review in the Atlantic and Pacific Oceans found no difference in species richness between unfished protected areas and fished areas. One replicated, site comparison study in the Indian Ocean found that the effects of prohibiting all fishing on fish species richness/diversity after 15 years varied with the sampling method used. POPULATION RESPONSE (66 STUDIES) Abundance (64 studies): Thirty of 54 site comparison studies (18 replicated, eight replicated and paired, two before-and-after, one paired and before-and-after, and one replicated and before-and-after) in the Indian Ocean, Atlantic Ocean, Mediterranean Sea, Pacific Ocean, Tasman Sea, Coral Sea, Philippine Sea, Caribbean Sea, Gulf of Mexico, and the Sulu Sea, found that marine protected areas that had been prohibiting all fishing for up to 25 years or more, had higher abundances (density and/or biomass) of all fish (total fish biomass, total fish density), fishery targeted fish species, non-fishery targeted fish species and all or most of the individual fish species/groups monitored, except fish densities (all or most) and non-fishery targeted species, compared to unprotected fished areas and/or partly-fished protected areas. The studies also found that in some cases where the total fish biomass or densities were higher in no-fished areas, the effect varied between individual groups of fish based on species family and/or position in the food chain, commercial target and non-target species, fish sizes, depth and habitat types. Eight studies found that inside protected areas prohibiting all fishing there were similar abundances of all fish, and all or most of the individual fish species/groups monitored, compared to fished areas between one and 20 years after implementation. The other sixteen studies found that the effect of prohibiting fishing in protected areas for three to 20 years on fish abundance varied between fish species or groups and on their fished status (fishery target or non-target) and/or position in the food chain. One also found that the effect varied with size or age of the protected areas. Five of six reviews (three systematic) across the world, in the Pacific and/or Atlantic Oceans and in unreported regions found that non-fished marine reserves with one to 27 years of protection had higher abundances of all fish, all fish and invertebrates combined and blue cod compared to fished areas, but there were differences between species/groups and fishing intensity outside reserves. The other review found that fish abundance varied between species in no-take marine reserves between one and 25 years old, and was affected by food chain position, level of exploitation and duration of protection. One replicated study in the Pacific Ocean found a long-term decline in the abundance/presence of eight of 12 shark and ray species inside an established (>15 years) no-fishing protected area, however enforcement was poor. One before-and after, site comparison study in the Pacific Ocean, found no differences in overall fish abundance between a marine reserve closed permanently to fishing for five years and a closed area that was harvested for two years during the same period. One site comparison study in the Coral Sea found that in a no-take zone of an area protected for at least 10 years, fish abundance of four of six fish groups were similar to no-entry and fished zones, but two had lower abundance than the no-entry zone. One replicated, paired, site comparison study in the Tasman Sea found that in a non-fished marine park zone abundance of commercially targeted fish was higher than partly fished zones but lower than unprotected areas after four to eight years. Reproductive success (1 study): One site comparison study in the Mediterranean Sea found more eggs of four commercially targeted fish species inside a non-fished marine reserve enforced for three years than in fished areas outside the reserve. Survival (1 study): One site comparison study in the Atlantic Ocean found that prohibiting all fishing in a marine protected area for three years resulted in similar survival of red hind grouper, compared to fished areas. Condition (20 studies): Two global review studies (one systematic) and two systematic reviews in the Pacific Ocean and the Atlantic and Pacific Oceans found that prohibiting all fishing in marine protected areas for one to 27 years resulted in larger fish overall and larger blue cod compared to fished areas, but there were differences between individual fish families or species. Eight of 11 site comparison studies (four replicated, one before-and-after, one paired, and one replicated and paired) in the Tasman Sea, Pacific Ocean, Indian Ocean, Mediterranean Sea, Atlantic Ocean, Java Sea and the Philippine Sea, found that non-fished protected areas had larger fish overall and larger individuals of all or most of the fish species/groups monitored, compared to fished areas, after one to 22 years. The other three studies found similar fish sizes of all or all but one species, compared to fished areas one to 16 years after all fishing was prohibited. Three site comparison studies (one replicated) in the Coral Sea, Caribbean Sea and the Atlantic Ocean found that fish size in protected areas that had not been fished for six to more than 20 years, varied between fish species or food chain groups. One site comparison study in the Atlantic Ocean found that red hind grouper were larger, but had similar growth, in an area protected from fishing for three years compared to fished areas. One site comparison study in the Atlantic Ocean found that young lemon sharks in areas protected from fishing for 20 years had similar growth rates, but lower condition, than sharks in unprotected fished areas. BEHAVIOUR (2 STUDIES)  Behaviour change (2 studies): One replicated, site comparison study in the Pacific and Indian Oceans found that surgeonfish and parrotfish inside established protected areas where fishing was prohibited, showed a similar avoidance response to fishing gears as in fished areas, and this increased with increasing fishing intensity outside the protected areas. One replicated, site comparison study in the Indian Ocean found that in non-fished areas protected for one and 24 years, fish grazing rates were higher compared to fished areas.  OTHER (15 STUDIES) Use (7 studies): Four of six site comparison studies in the Pacific Ocean, Atlantic Ocean and the Tasman Sea found that marine protected areas where all fishing had been prohibited for at least five to 15 years, were used for a large proportion of time by shark and ray species and commercially important reef fish species, compared to fished areas, thus were provided protection from fishing. Two other studies found that time spent inside areas closed to all fishing for 20 years and over 30 years, varied between species and with size for three shark species and with size for giant trevally. One replicated study in the Indian Ocean found that most individuals of five fish species remained inside a marine reserve zone closed to fishing over a nine-year period. Catch abundance (2 studies): One of two site comparison studies in the Mediterranean Sea and Pacific Ocean found that commercial fish catch rates in small-scale traditional fisheries were highest closest to a marine reserve closed to all fishing for 22 years, and decreased with increasing distance from the reserve. The other study found that there was no increase in fish catch rates in commercially landed catch in the five years after a no-fishing zone was implemented in a co-managed protected area. Stock biomass (1 study): One replicated, site comparison study in the Indian Ocean found that the stock biomass (the harvested portion of the population) of reef fish species was highest in enforced protected areas closed to all fishing, compared to various other area management regimes.  Fishing mortality (2 studies): Two site comparison studies in the North Sea and Pacific Ocean found that prohibiting fishing in protected areas resulted in reduced commercial fishing mortality of corkwing wrasse tagged inside non-fished marine reserves compared to fished areas, and that the overall fishing mortality of grey reef sharks tagged inside protected areas was low.  Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2682https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2682Sat, 28 Nov 2020 14:35:06 +0000Collected Evidence: Collected Evidence: Use a larger mesh size Forty-two studies examined the effects of using a larger mesh size of fishing net on marine fish populations. Ten studies, and one review, were in the Atlantic Ocean (UK, Portugal, USA). Eight studies were in the Aegean Sea (Greece, Turkey). Five studies were in the North Sea (UK, Netherlands, France, North Europe) and three were in the Tasman Sea (Australia). Two studies were in each of the Mediterranean Sea (Italy, Turkey), the Pacific Ocean (USA, Chile), the Skagerrak and Kattegat (Northern Europe) and the Gulf of Mexico (Mexico). One study was in each of the English Channel (UK), the Bering Sea (USA), the Baltic Sea (Finland), the Caribbean Sea (Barbados), the Persian Gulf (Kuwait), the Bristol Channel (UK), the Barents Sea (Norway) and the Arabian Sea (India).  COMMUNITY RESPONSE (0 STUDIES) POPULATION RESPONSE (3 STUDIES) Survival (3 studies): One of three controlled studies (one replicated and paired, and one replicated) in the Atlantic Ocean, Baltic Sea and Bristol Channel found that larger mesh sizes improved the post-capture survival of skates and rays compared to smaller meshes. The other two found similar post-capture survival in haddock, whiting and small herring between trawl nets with larger mesh and nets of smaller mesh size. Condition (1 study): One replicated, paired, controlled study in the Bristol Channel reported that the condition of skates and rays at capture was better with a larger trawl codend mesh size compared to a smaller mesh. BEHAVIOUR (0 STUDIES) OTHER (41 STUDIES) Reduction of unwanted catch (21 studies): Fifteen of 20 replicated studies (five controlled, two paired, eight paired and controlled, one randomized and one randomized and controlled) in the North Sea, Skagerrak/Kattegat, Aegean Sea, Caribbean Sea, Mediterranean Sea, Atlantic Ocean, Tasman Sea, Gulf of Mexico, Pacific Ocean, Bering Sea and the Bristol Channel found that using a larger mesh size in a fishing net (various trawls, gillnets, seines and trammel nets) reduced the catches of unwanted (small/undersized, non-commercial, discarded) fish or fish and invertebrates combined, compared to nets with standard/smaller mesh sizes. One study found that amounts of unwanted fish were reduced with larger mesh at smaller catch sizes but were similar between large and small meshes at larger catch sizes, and one found that increasing a trawl codend mesh size reduced the unwanted catch of one of two fish species compared to a standard mesh. Three found that larger mesh sized fishing nets did not typically reduce the unwanted fish catch compared to nets of smaller mesh sizes. One study found that increasing both the mesh size and minimum size limit reduced catches of the youngest fish. Improved size-selectivity of fishing gear (23 studies): Nineteen of 21 replicated studies (eight controlled, four paired and controlled, three randomized and controlled, and one paired) and one review, in the North Sea, Aegean Sea, Baltic Sea, Pacific Ocean, Atlantic Ocean, Gulf of Mexico, Tasman Sea, Arabian Sea, Persian Gulf, Barents Sea and the Mediterranean Sea found that larger mesh sizes (both diamond and square) of the netting of various gear types improved the size-selectivity for all fish species assessed and in one, for two of three fish species, compared to smaller mesh sizes. One study found that size-selectivity for fish was not improved with larger mesh size in the netting of fish traps. The other found that increasing the codend mesh size of trawls fitted with size-sorting escape grids resulted in similar size-selectivity of the codend for fish compared to smaller codend mesh sizes. One controlled study in the English Channel found that a trawl net codend with a larger size of square mesh had similar size-selectivity for Atlantic mackerel as a smaller diamond mesh codend. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2697https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2697Thu, 03 Dec 2020 19:56:32 +0000Collected Evidence: Collected Evidence: Modify gillnet or entangling (trammel/tangle) net configuration Four studies examined the effects of modifying gillnet or entangling (trammel or tangle) net configuration on marine fish populations. One study was in each of the Gulf of Maine (USA), the Atlantic Ocean (USA) and the Adriatic Sea (Italy), and one study was in two estuaries in North Carolina (USA).  COMMUNITY RESPONSE (0 STUDIES) POPULATION RESPONSE (0 STUDIES) BEHAVIOUR (0 STUDIES) OTHER (4 STUDIES) Reduction in unwanted catch (4 studies): Three of four replicated studies (one controlled, two paired and controlled) in the Gulf of Maine, Atlantic Ocean, Adriatic Sea and estuaries in the USA, found that modifications to the configuration of gillnets, including reduced height, increased tension twine diameter and mesh size and orientation, reduced the unwanted catch of cod in one of two net designs, discarded fish of commercial and non-commercial species, and the discards of non-commercial, but not commercial species (fish and invertebrates), compared to conventional configurations. The other study found that gillnet modification did not typically reduce unwanted shark catches compared to unmodified gillnets. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2701https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2701Fri, 11 Dec 2020 11:55:00 +0000Collected Evidence: Collected Evidence: Modify fishing trap/pot configuration Twenty-three studies examined the effects of modifying fishing trap or pot configuration on marine fish populations. Five studies were in the Atlantic Ocean (USA, Brazil, Canary Islands, Canada). Three studies were in each of the Bothnian Sea (Sweden), the Baltic Sea (Poland, Sweden), the Tasman Sea (Australia) and the Indian Ocean (Kenya, South Africa). One study was in each of the Kattegat (Denmark), the Mediterranean Sea (Spain), the Adriatic Sea (Italy), the Southern Ocean (Australia), the Pacific Ocean (Canada) and the Barents Sea (Norway).  COMMUNITY RESPONSE (0 STUDIES) POPULATION RESPONSE (1 STUDY) Survival (1 study): One replicated, controlled study in the Bothnian Sea found that survival of small herring escaped from a pontoon fish trap through a size-sorting grid was similar to trap-caught herring that did not pass through a grid. BEHAVIOUR (0 STUDIES) OTHER (22 STUDIES) Reduction of unwanted catch (20 studies): Sixteen of 20 replicated studies (11 controlled, one randomized, paired and controlled, one randomized and controlled, two paired and controlled and one randomized) and one before-and-after study in the Atlantic Ocean, Baltic Sea, Mediterranean Sea, Southern Ocean, Tasman Sea, Adriatic Sea, Bothnian Sea, Indian Ocean, Pacific Ocean, the Kattegat and the Barents Sea, found that modifications to trap configuration (various, including using a different trap type, increased mesh size and fitting an escape device) reduced the unwanted (undersized, discarded or non-commercial target) catches of fish (overall, or all of multiple study species), brown trout, black sea bass, herring, bluethroat wrasse and leatherjacket, cod, protected rockfishes, whitefish, black sea bass, American eel and winter flounder, sharks/rays and of salmon and rainbow trout in one of two cases, compared to unmodified conventional traps or traps of other designs. One of these also found that the number of unwanted species (fish and invertebrates) was lower in modified traps. Three other studies, found that trap modification or type had no effect on unwanted catches of white croaker, non-commercial fish or undersized Atlantic cod, and non-target haddock catches were increased. However, one of these also reported that traps (creels) did not catch high proportions of immature fish, unlike bottom trawls. Improved size-selectivity of fishing gear (4 studies): Three of four replicated studies (two controlled and one randomized, paired and controlled) in the Baltic Sea, Tasman Sea, Indian Ocean and Atlantic Ocean found that traps or pots modified with a square mesh escape window or larger mesh sizes improved the size-selectivity of Atlantic cod, black sea bass and most fish species compared to smaller mesh and/or standard gear. The other found that increasing mesh size of a trap escape panel had no effect on size-selectivity of panga. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2702https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2702Mon, 14 Dec 2020 10:32:58 +0000Collected Evidence: Collected Evidence: Decrease the circumference or diameter of the codend of a trawl net Thirteen studies examined the effects of decreasing the circumference or diameter of a trawl codend on marine fish populations. Four studies were in the Tasman Sea (Australia) and three studies were in the North Sea (UK, Norway). Two studies were in the Adriatic Sea (Italy) and two were in the Baltic Sea (Denmark/ Germany). One study and one review were in the Northeast Atlantic Ocean (Northern Europe).  COMMUNITY RESPONSE (0 STUDIES) POPULATION RESPONSE (0 STUDIES) BEHAVIOUR (0 STUDIES) OTHER (13 STUDIES) Reduction of unwanted catch (6 studies): Two of six replicated, controlled studies (three paired, and one randomized and paired) in the Tasman Sea, Adriatic Sea and Northeast Atlantic Ocean found that bottom trawl nets of smaller circumferences reduced discarded catch of fish in three of five cases and of total discarded catch (fish and invertebrates) in one of two areas, but not overall, compared to standard trawls. Two studies found that reduced circumference codends reduced non-target or discarded fish catch in three of 12 cases and for one of four species. The two other studies found that discarded fish catch was not reduced in smaller circumference codends. Improve size-selectivity of fishing gear (8 studies): Four of eight replicated, controlled studies (one paired) in the North Sea, Adriatic Sea and Baltic Sea, and one review in the Northeast Atlantic Ocean, found that decreasing the circumference or diameter of the codend of trawl gear (bottom trawls and seines) improved the size-selectivity of haddock, Atlantic cod, whiting and European hake and red mullet, compared to larger circumferences/diameters. One also found the effect was the same across two codend mesh sizes, and one also found the effect was greater in diamond mesh with the netting orientation turned by 90° compared to standard diamond mesh. Two studies found that a decrease in codend circumference/diameter improved size-selectivity of haddock and saithe in one of two cases, and of one of three fish species. The other study found that a smaller circumference codend reduced size-selectivity of the gear for one of three fish species and was similar for the other two. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2706https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2706Thu, 17 Dec 2020 14:51:11 +0000Collected Evidence: Collected Evidence: Use a square mesh instead of a diamond mesh codend in a trawl net Twenty-six studies examined the effects of using a square mesh instead of a diamond mesh codend in a trawl net on marine fish populations. Five studies were in the North Atlantic Ocean (Canada, Portugal, USA), four were in the Aegean Sea (Greece, Turkey), three were in the Mediterranean Sea (Spain) and the Tasman Sea (Australia), two studies were in each of the English Channel (UK), the Adriatic Sea (Italy) and the South Pacific Ocean (Australia, Chile), and one study was in each of the Greenland Sea (Iceland), the North Pacific Ocean (USA), the Bristol Channel (UK), the Kattegat and the Skagerrak (Denmark) and the Coral Sea (Australia).  COMMUNITY RESPONSE (0 STUDIES) POPULATION RESPONSE (2 STUDIES) Survival (2 studies): One of two replicated, paired, controlled studies in the Aegean Sea and Bristol Channel found that the short-term survival of two of six fish species was higher after escaping through a square mesh compared to a diamond mesh codend. The other study reported that skate caught in a square mesh codend had a higher overall survival likelihood than those caught in a diamond mesh codend. BEHAVIOUR (0 STUDIES) OTHER (25 STUDIES) Reduction of unwanted catch (16 studies): Ten of 16 replicated, controlled studies (including five paired, three randomized and three randomized and paired) in the Greenland Sea, Aegean Sea, Atlantic Ocean, Tasman Sea, Pacific Ocean, Mediterranean Sea, English Channel, Bristol Channel and Coral Sea, found that square mesh codends reduced the unwanted (non-target or non-marketable/discarded) catches of all fish species monitored, young individuals of half or most commercially targeted fish, total unwanted catch (fish and invertebrates), and discarded fish in deeper but not shallower fishing areas, compared to diamond mesh codends; and two of those studies also found that there was a variable effect on unwanted catch between individual fish species/groups. Four studies found no reduction in catches of unwanted small rockfish and flatfish, three of four commercially important bottom fish species, total unwanted catch (fish and invertebrates), or the total number of unwanted species (fish and invertebrates), compared to diamond mesh codends. One study found that square mesh codends retained more fish overall than diamond mesh but varied for individual species by fish shape and size. One study found that unwanted fish catch depended on codend mesh size as well as configuration (square or diamond). Two of the studies, where square mesh codends had no or a varied effect, also found that size selectivity increased with increases in mesh size for both square and diamond mesh codends. Improved size-selectivity of fishing gear (14 studies): Six of 14 replicated, controlled studies (including three paired, one randomized and one randomized and paired) in the Atlantic Ocean, Mediterranean Sea, Adriatic Sea, Aegean Sea, English Channel, Pacific Ocean, Tasman Sea and the Kattegat and Skagerrak, found that using a square mesh codend in a trawl net (bottom and pelagic) improved size selectivity for silver hake, horse mackerel, European hake, axillary seabream, poor cod, greater forkbeard, blue whiting, discarded fish and three of four commercially targeted fish, compared to diamond mesh codends. Five studies found no difference in size selectivity between square and diamond mesh codends for Atlantic mackerel, long rough dab, yellowtail scad and striped seapike, rockfish and flatfish, and three of four commercially important bottom fish species. The other three studies found that the effect of square mesh instead of diamond mesh codends varied with fish body shape (round or flat), and for three of three and five of five roundfish species size selectivity was improved, but not for one flatfish. Two of the studies, where square mesh codends had either no or a varied effect, also found that size selectivity increased with increases in mesh size for both square and diamond mesh codends. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2714https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2714Fri, 01 Jan 2021 14:39:22 +0000Collected Evidence: Collected Evidence: Fit mesh escape panels/windows to a trawl net Thirty-eight studies examined the effects of fitting one or more mesh escape panels/windows to trawl nets on marine fish populations. Ten studies were in the North Sea (UK, Netherlands, Norway), four studies were in each of the Baltic Sea (Denmark, Sweden, Northern Europe), Kattegat and/or Skagerrak (Norway/Sweden/Denmark) and the Northeast Atlantic Ocean (Iceland, UK, Northern Europe). Two studies were in the Gulf of Carpentaria (Australia) and two were in the Bay of Biscay (France). One study was in each of the Irish Sea (UK), the Tasman Sea (Australia), the Bering Sea (USA), the Indian Ocean (Mozambique), the Norwegian Sea (Norway), the Pacific Ocean (Chile), the Mid-Atlantic Bight (USA), the Gulf of Maine (USA) and the Tyrrhenian Sea (Italy). Two studies were reviews (Northern Europe), and one study was in a laboratory (Japan).  COMMUNITY RESPONSE (0 STUDIES) POPULATION RESPONSE (1 STUDY) Survival (1 study): One replicated, controlled study in the Baltic Sea found that there was no difference in survival between cod escaping from diamond mesh codends with or without square mesh escape windows. BEHAVIOUR (1 STUDY) Use (1 study): One replicated study in a laboratory found that small immature masu salmon were able to actively swim (escape) through the meshes of square mesh panels under simulated trawl conditions. OTHER (36 studies) Reduce unwanted catch (30 studies): One before-and-after study in the Baltic Sea and fourteen of 19 replicated studies (including one paired, four controlled, 10 paired and controlled, and one randomized, paired and controlled) in the North Sea, Kattegat and Skagerrak, Irish Sea, Tasman Sea, Bering Sea, Gulf of Carpentaria, Mid-Atlantic Bight, Indian Ocean, Baltic Sea, Northeast Atlantic Ocean, Bay of Biscay, Tyrrhenian Sea and the Pacific Ocean, found that square mesh escape panels/windows of varying designs and number fitted to diamond mesh trawl nets (bottom and pelagic), reduced the unwanted catches (non-target or non-marketable species/sizes) of all fish species monitored, all but one and one of four fish species, the main unwanted fish species but only two of nine other finfish, and the total unwanted/discarded catch (fish and invertebrates combined), compared to standard diamond mesh trawl nets, and the effect varied with panel/window design, position in the net and/or fish body type, as well as catch size. The other five studies and a review study of mesh escape panel/window use in the Kattegat and Skagerrak, found that square mesh panels/windows did not reduce the unwanted catches of fish, Atlantic cod and three of three commercial bottom fish species, compared to diamond mesh nets without panels/windows. Four of five replicated, controlled studies (including three paired) in the North Sea, Northeast Atlantic Ocean and Gulf of Maine, found that large diamond mesh escape panels in diamond mesh trawl nets (beam and bottom) reduced unwanted catches of cod, whiting and haddock, and discarded catch (fish and invertebrates), but not of whiting in one study, compared to nets without large diamond mesh panels, and the effect varied with panel design and vessel size. The other study found that the unwanted catches of only one of seven species/groups of non-target fish was reduced by a large diamond mesh panel. Two replicated, paired, controlled studies in the North Sea and Baltic Sea found that new or different configurations of square mesh panels/windows in diamond mesh trawl nets reduced unwanted fish and cod catches, compared to existing/standard panels or windows. One replicated, paired, controlled study in the Gulf of Carpentaria found that diamond mesh trawl nets with either a top square mesh escape panel or a large supported opening ('Bigeye') reduced unwanted shark, but not ray and sawfish catches compared to standard trawl nets. One before-and-after study in the Bay of Biscay found that supplementing a top square mesh escape window in a prawn trawl net with either a bottom window, a flexible escape grid or an increased mesh size diamond codend, did not reduce the unwanted hake catch Improved size selectivity of fishing gear (9 studies): One review study of mesh escape panel/window use in the Kattegat and Skagerrak and four of six replicated, controlled studies (including four paired) in the Baltic Sea, North Sea, northeast Atlantic Ocean, found that square mesh escape panels/windows in diamond mesh trawl nets improved the size selectivity of trawl nets for Atlantic cod and haddock, compared to trawl nets without panels/windows, and there was no difference compared to standard trawl nets with reduced mesh circumferences, and the effect varied with panel position and design. The other two studies found no effect on the size selectivity of undersized fish, haddock, saithe or Atlantic cod, compared to standard trawl nets. One review study of gear size selectivity in the northeast Atlantic Ocean found that the effect of fitting square mesh panels to trawl nets on haddock selectivity varied with panel mesh size, position, and time of year. One replicated, controlled study in the Norwegian Sea found no difference in the size selectivity of cod and haddock between diamond mesh trawl nets fitted with either square mesh escape windows, rigid size-sorting escape grids or a large diamond mesh codend. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2716https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2716Sat, 02 Jan 2021 12:18:36 +0000Collected Evidence: Collected Evidence: Fit a size-sorting escape grid (rigid or flexible) to a fish trawl net Eighteen studies examined the effects of fitting size-sorting escape grids to a fish trawl net on marine fish populations. Six studies were in the North Sea (France, Norway, Scotland), three were in the North Atlantic Ocean (Portugal, USA), and two were in the Norwegian Sea (Norway). One study was in each of the Barents Sea (Norway), the South Atlantic Ocean (Namibia), the Mediterranean Sea (Spain), the Adriatic Sea (Italy), the Gulf of Maine (USA), and the Baltic Sea (northern Europe). One study was in a laboratory (Japan).  COMMUNITY RESPONSE (0 STUDIES) POPULATION RESPONSE (0 STUDIES) BEHAVIOUR (1 STUDY) Use (1 study): One replicated study in a laboratory in Japan found that masu salmon were able to actively escape through a rigid escape grid, irrespective of grid orientation and towing speed, but escape was reduced in dark conditions compared to light. OTHER (17 STUDIES) Reduction of unwanted catch (14 studies): Eleven of 14 replicated studies (three paired and controlled) in the North Sea, North Atlantic Ocean, Barents Sea, South Atlantic Ocean, Mediterranean Sea, Adriatic Sea, Gulf of Maine and Baltic Sea found that fitting size-sorting escape grids of various types and configurations to fish trawl nets reduced the catches of unwanted small mackerel, small monkfish, non-target whiting and haddock, small hake, unwanted spiny dogfish, non-target herring, prohibited halibut, unwanted sizes of cod and other non-target fish, relative to the retained codend catch or compared to trawls without grids. One study found that fitting size-sorting escape grids of three designs to fish trawl nets reduced the discarded catch of nine of 12 fish species and the overall amount of discarded catch (fish and invertebrates combined), relative to the retained codend catch. One study found that fitting size-sorting escape grids had a mixed effect on the reduction of unwanted and/or undersized fish catch relative to the retained codend catch depending on fish ecological group. The other study found that, compared to standard trawl nets without escape grids, trawls with size-sorting escape grids reduced the overall catch of whiting, but not of undersized whiting. Improved size-selection of fishing gear (3 studies): Two of three replicated studies (two paired and controlled and one controlled) in the North Sea and Norwegian Sea, found that a size-sorting escape grid fitted to trawl nets improved the size-selection of haddock, but not saithe or cod, compared to standard nets without grids. One study found that trawl nets fitted with an escape grid did not improve the size-selection of cod and haddock compared to trawl nets fitted with square mesh escape windows. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2720https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2720Fri, 08 Jan 2021 16:54:19 +0000Collected Evidence: Collected Evidence: Fit a size-sorting escape grid (rigid or flexible) to a prawn/shrimp trawl net Thirty studies examined the effects of fitting size-sorting escape grids to prawn/shrimp trawl nets on marine fish populations. Five studies were in the North Sea (Scotland/Norway, Belgium/Netherlands, UK, Scotland), four were in the Coral Sea (Australia) and two were in each of the Gulf of Carpentaria (Australia), the Indian Ocean (Australia, Mozambique), the North Atlantic Ocean (Portugal, USA), the Pacific Ocean (Chile, USA), the Skagerrak and Kattegat (northern Europe) and the South Atlantic Ocean (Brazil). One study was in each of the Tasman Sea (Australia), the Greenland Sea (Svalbard), the Bay of Biscay (France), the Gulf of Maine (USA), the Gulf of Thailand (Vietnam), the Tyrrhenian Sea (Italy), the Gulf of St Vincent (Australia), the Persian Gulf (Iran) and the Northeast Atlantic Ocean (Norway). COMMUNITY RESPONSE (0 STUDIES) POPULATION RESPONSE (0 STUDIES) BEHAVIOUR (0 STUDIES) OTHER (30 STUDIES) Reduction of unwanted catch (30 studies): Seven of seven replicated studies (including one controlled) in the northeast Atlantic Ocean, North Sea, North Atlantic Ocean, Greenland Sea, Gulf of Thailand, Tyrrhenian Sea and the Skagerrak and Kattegat found that fitting rigid or flexible size-sorting escape grids, of various types and configurations, to prawn/shrimp trawl nets reduced unwanted fish catches (non-commercial species and discarded commercial species/sizes) by allowing the escape of unwanted sharks and the other fish species monitored. Two of two before-and-after studies in the Gulf of Maine and Pacific Ocean found that after the introduction of size-sorting escape grids to trawl nets in fisheries for shrimp, the capture of non-target and unwanted fish was reduced compared to before grids were used. Eleven of 20 replicated studies (including one controlled and 19 paired and controlled) in the Tasman Sea, Coral Sea, Gulf of Carpentaria, North Sea, Indian Ocean, Bay of Biscay, Skagerrak and Kattegat, Pacific Ocean, South Atlantic Ocean, Gulf of St Vincent and Persian Gulf found that prawn/shrimp trawls with size-sorting escape grids, of various types and configurations, had lower catches of all or all but one undersized or otherwise unwanted fish and shark/ray species monitored, and unwanted total catch (fish and invertebrates), compared to trawl nets without escape grids. Two found that escape grids reduced non-target catches of most sizes of whiting and plaice and larger sizes of total fish, but increased the retention of small cod and haddock. Three studies found a variable effect of fitting escape grids to shrimp/prawn trawl nets on unwanted fish catch compared to nets with no grids, and the effect varied with year, site and grid type. Three found that grids had no effect on the reduction of unwanted fish and catches were similar for all or most of the unwanted non-commercial and commercial fish species/groups and for the total unwanted catch (fish and invertebrates). The other study found that fewer unwanted fish of 10 of 11 species/groups were retained in a shrimp/prawn trawl net with an escape grid used in combination with a diamond mesh codend with the mesh orientation turned by 90°, compared to a conventional diamond mesh net with no grid. One replicated, randomized study in the North Atlantic Ocean found that the reduction in catch of unwanted sharks depended on the type of escape grid and shrimp/prawn trawl net used. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2721https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2721Mon, 18 Jan 2021 16:42:48 +0000Collected Evidence: Collected Evidence: Fit large, supported escape openings (such as Fisheyes, Bigeyes and radial escape sections) to trawl nets Eight studies examined the effects of fitting large, supported escape openings (such as Fisheyes, Bigeyes and radial escape sections) to trawl nets on marine fish populations. Three studies were in the northwest Atlantic Ocean (USA) and three were in the Gulf of Carpentaria (Australia). One study was in the north Pacific Ocean (USA) and one was in the Coral Sea (Australia).  COMMUNITY RESPONSE (0 STUDIES) POPULATION RESPONSE (0 STUDIES) BEHAVIOUR (0 STUDIES) OTHER (8 STUDIES) Reduction of unwanted catch (8 studies): Six of seven replicated studies (five paired and controlled, and one randomized, paired and controlled) in the Atlantic Ocean, Gulf of Carpentaria, Pacific Ocean and the Coral Sea found that fitting large, supported escape openings (various designs including Fisheyes, Bigeyes and radial escape sections) to trawl nets reduced the overall catches of unwanted fish, immature red snapper and total unwanted catch (fish and invertebrates combined) compared to standard nets. The other study found that there were fewer unwanted Chinook salmon in catches with two of two designs of escape openings, but only one of the designs caught fewer widow rockfish. One replicated, paired and controlled study in the Gulf of Carpentaria found that trawl nets fitted with either large escape openings or a square mesh escape panel reduced unwanted shark catch but not unwanted ray or sawfish catches, compared to standard nets. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2723https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2723Wed, 20 Jan 2021 16:58:00 +0000Collected Evidence: Collected Evidence: Fit mesh escape panels/windows and a size-sorting grid (rigid or flexible) to a trawl net Six studies examined the effects of fitting trawl nets with mesh escape panels or windows and a size-sorting grid on marine fish populations. Two studies were in the Atlantic Ocean (Portugal, Suriname), two were in the Indian Ocean (Australia, Mozambique), one study was in the Gulf of Carpentaria (Australia) and one was in the English Channel (UK).  COMMUNITY RESPONSE (0 STUDIES) POPULATION RESPONSE (0 STUDIES) BEHAVIOUR (0 STUDIES) OTHER (6 STUDIES) Reduce unwanted catch (5 studies): Four of five replicated studies (four paired, controlled) in the Gulf of Carpentaria, Indian Ocean and Atlantic Ocean, found that bottom trawl nets fitted with square mesh escape panels and size-sorting grids of various types reduced the unwanted catch (non-target or undersized) of fish, sharks and stingrays, rays and total discarded catch (fish and invertebrates), compared to standard unmodified trawl nets, and that fish escape through either the panel/window, grid, or both varied between fish species or sizes. The other study found that the escape of non-target fish from the combined use of a square mesh panel and grid depended on the position of the panel in the net. Improved size-selectivity of fishing gear (1 study): One replicated, paired, controlled study in the English Channel found that size-selectivity of whiting was increased in bottom trawl nets fitted with square mesh escape panels or cylinders in combination with one or two size-sorting grids of different types, compared to standard nets. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2727https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2727Fri, 22 Jan 2021 15:52:49 +0000Collected Evidence: Collected Evidence: Exclude wild invertebrates using physical barriersWe found no studies that evaluated the effects, on vegetation, of physically excluding wild invertebrates from marshes or swamps.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3140https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3140Mon, 05 Apr 2021 14:24:23 +0100Collected Evidence: Collected Evidence: Control populations of wild invertebratesWe found no studies that evaluated the effects, on vegetation, of controlling populations of wild invertebrates in marshes or swamps.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3141https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3141Mon, 05 Apr 2021 14:25:23 +0100Collected Evidence: Collected Evidence: Create hole habitats (>50 mm) on subtidal artificial structures Three studies examined the effects of creating hole habitats on subtidal artificial structures on the biodiversity of those structures. One study was on an open coastline in northern Israel, one was in a marina in northern Israel, and one was off the west coast of Sweden. COMMUNITY RESPONSE (3 STUDIES) Overall community composition (3 studies): Three replicated, controlled studies (including one randomized, paired sites, before-and-after study) in Israel and off Sweden found that creating hole habitats on subtidal artificial structures, along with grooves, environmentally-sensitive material and pits or small ledges in two studies, altered the combined macroalgae and invertebrate or mobile invertebrate and fish community composition on and around structures. They also supported mobile invertebrate, non-mobile invertebrate and/or fish species that were absent from structure surfaces without added habitat features. Overall richness/diversity (3 studies): Two of three replicated, controlled studies (including one randomized, paired sites, before-and-after study) in Israel and off Sweden found that creating hole habitats on subtidal artificial structures, along with grooves, environmentally-sensitive material and pits or small ledges, increased the combined macroalgae and invertebrate species richness and/or diversity on and around structures. One found that creating holes did not increase the combined mobile invertebrate and fish species richness or diversity. POPULATION RESPONSE (2 STUDIES) Overall abundance (1 study): One replicated, controlled study off Sweden reported that creating hole habitats on subtidal artificial structures did not increase the combined mobile invertebrate and fish abundance on and around structures. Algal abundance (1 study): One replicated, controlled study in Israel reported that creating hole habitats on a subtidal artificial structure, along with pits, grooves and environmentally-sensitive material, had mixed effects on macroalgal abundances on structure surfaces, depending on the species group. Invertebrate abundance (2 studies): One of two replicated, controlled studies in Israel and off Sweden found that creating hole habitats on subtidal artificial structures increased the abundance of brown crabs on and around structures, but not other mobile invertebrates. One reported that creating holes, along with pits grooves and environmentally-sensitive material, had mixed effects on invertebrate abundances, depending on the species group. Fish abundance (2 studies): One of two replicated, controlled studies in Israel and off Sweden found that creating hole habitats on subtidal artificial structures did not increase fish species abundances on and around structures. One reported that creating holes, along with pits grooves and environmentally-sensitive material, had mixed effects on fish abundances, depending on the species group. BEHAVIOUR (0 STUDIES)Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3434https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3434Thu, 12 Aug 2021 13:45:42 +0100Collected Evidence: Collected Evidence: Create natural rocky reef topography on intertidal artificial structures Two studies examined the effects of creating natural rocky reef topography on intertidal artificial structures on the biodiversity of those structures. One study was on an open coastline and in estuaries in the UK, and one was on an open coastline in the UK. COMMUNITY RESPONSE (1 STUDY) Overall richness/diversity (1 study): One replicated, randomized, controlled study in the UK found that creating natural rocky reef topography on intertidal artificial structures did not increase the combined macroalgae and invertebrate species richness on structure surfaces. POPULATION RESPONSE (1 STUDY) Invertebrate abundance (1 study): One replicated, randomized, controlled study in the UK found that creating natural rocky reef topography on intertidal artificial structures had mixed effects on barnacle and mobile invertebrate abundances on structure surfaces, depending on the site. BEHAVIOUR (1 STUDY) Use (1 study): One study in the UK reported that natural topography created on intertidal artificial structures was colonized by macroalgae and limpets, and that limpets used shaded grooves and water-retaining depressions created by the topography. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3435https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3435Fri, 13 Aug 2021 12:05:11 +0100Collected Evidence: Collected Evidence: Cease or alter maintenance activities on subtidal artificial structures Two studies examined the effects of ceasing or altering maintenance activities on subtidal artificial structures on the biodiversity of those structures. One study was in an estuary in southeast Australia and one was in an inland bay in eastern USA. COMMUNITY RESPONSE (1 STUDY) Overall community composition (1 study): One replicated, paired sites, controlled study in the USA found that reducing the frequency of cleaning on subtidal artificial structures did not alter the combined invertebrate and fish community composition on and around structure surfaces. Overall richness/diversity (1 study): One replicated, paired sites, controlled study in the USA found that reducing the frequency of cleaning on subtidal artificial structures did not increase the combined invertebrate and fish species richness or diversity on and around structure surfaces. POPULATION RESPONSE (2 STUDIES) Overall abundance (1 study): One replicated, paired sites, controlled study in the USA found that reducing the frequency of cleaning on subtidal artificial structures did not increase the combined invertebrate and fish abundance on and around structure surfaces. Algal abundance (1 study): One replicated, paired sites, controlled study in the USA found that reducing the frequency of cleaning on subtidal artificial structures increased the macroalgal abundance on structure surfaces. Fish abundance (1 study): One replicated, randomized, controlled study in Australia found that reducing the area cleaned on a subtidal artificial structure increased the seahorse abundance on structure surfaces. Survival (1 study): One replicated, paired sites, controlled study in the USA found that reducing the frequency of cleaning on subtidal artificial structures did not increase the survival of transplanted oysters. Condition (1 study): One replicated, paired sites, controlled study in the USA found that reducing the frequency of cleaning on subtidal artificial structures did not increase the growth of transplanted oysters. BEHAVIOUR (0 STUDIES)Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3447https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3447Fri, 20 Aug 2021 14:57:27 +0100Collected Evidence: Collected Evidence: Create groove habitats (1–50 mm) on subtidal artificial structures Two studies examined the effects of creating groove habitats on subtidal artificial structures on the biodiversity of those structures. Both studies were on open coastlines in Japan and northern Israel. COMMUNITY RESPONSE (1 STUDY) Overall community composition (1 study): One replicated, controlled study in Israel found that groove habitats created on a subtidal artificial structure, along with holes, pits and environmentally-sensitive material, altered the combined macroalgae and invertebrate community composition on structure surfaces. They also supported macroalgae, non-mobile invertebrate and fish species that were absent from a similar structure without added habitat features. Overall richness/diversity (1 study): One replicated, controlled study in Israel found that creating groove habitats on a subtidal artificial structure, along with holes, pits and environmentally-sensitive material, increased the combined macroalgae and invertebrate species diversity on structure surfaces. POPULATION RESPONSE (2 STUDIES) Algal abundance (2 studies): Two controlled studies (including one replicated study) in Japan and Israel reported that creating groove habitats on subtidal artificial structures, along with holes, pits and environmentally-sensitive material in one, had mixed effects on macroalgal abundances on structure surfaces, depending on the species group. Invertebrate abundance (1 study): One replicated, controlled study in Israel reported that creating groove habitats on a subtidal artificial structure, along with holes, pits and environmentally-sensitive material, had mixed effects on invertebrate abundances on structure surfaces, depending on the species group. Fish abundance (1 study): One replicated, controlled study in Israel reported that creating groove habitats on a subtidal artificial structure, along with holes, pits and environmentally-sensitive material, had mixed effects on fish abundances on and around structure surfaces, depending on the species group. BEHAVIOUR (0 STUDIES)Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3448https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3448Fri, 20 Aug 2021 15:38:06 +0100Collected Evidence: Collected Evidence: Create textured surfaces (≤1 mm) on subtidal artificial structures Three studies examined the effects of creating textured surfaces on subtidal artificial structures on the biodiversity of those structures. Two studies were on open coastlines in Italy and Israel, and one was in an estuary in eastern USA. COMMUNITY RESPONSE (3 STUDIES) Overall community composition (3 studies): Two of three replicated, controlled studies (including two randomized studies) in Italy, Israel and the USA found that creating textured surfaces on subtidal artificial structures, along with using environmentally-sensitive material in one, altered the combined macroalgae and invertebrate community composition on structure surfaces, while one found no effect. One of the studies also reported that textured surfaces with environementally-sensitive material supported mobile and non-mobile invertebrate species that were absent from fibreglass surfaces without texture. Overall richness/diversity (2 studies): One of two replicated, controlled studies (including one randomized study) in Italy and the USA found that creating textured surfaces on subtidal artificial structures did not increase the combined macroalgae and non-mobile invertebrate species richness on structure surfaces. One study found that creating textured surfaces, along with using environmentally-sensitive material, did. POPULATION RESPONSE (3 STUDIES) Overall abundance (3 studies): Two of three replicated, controlled studies (including two randomized studies) in Italy, Israel and the USA found that creating textured surfaces on subtidal artificial structures did not increase the combined macroalgae and non-mobile invertebrate live cover on structure surfaces. One study found that creating textured surfaces, along with using environmentally-sensitive material, did increase the cover and biomass. Algal abundance (1 study): One replicated, randomized, controlled study in Italy found that creating textured surfaces on subtidal artificial structures had mixed effects on the macroalgal abundance on structure surfaces, depending on the species group and site. Invertebrate abundance (1 study): One replicated, randomized, controlled study in Italy found that creating textured surfaces on subtidal artificial structures had mixed effects on the non-mobile invertebrate abundance on structure surfaces, depending on the site. BEHAVIOUR (0 STUDIES)Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3449https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3449Tue, 31 Aug 2021 15:40:02 +0100Collected Evidence: Collected Evidence: Create short flexible habitats (1–50 mm) on subtidal artificial structures Three studies examined the effects of creating short flexible habitats on subtidal artificial structures on the biodiversity of those structures. Two studies were in an estuary in southeast Australia and one was in marinas in northwest France. COMMUNITY RESPONSE (2 STUDIES) Invertebrate community composition (2 studies): Two replicated, randomized, controlled studies (including one paired sites study) in Australia and France found that creating short flexible habitats on subtidal artificial structures had mixed effects on the mobile and/or non-mobile invertebrate community composition, depending on the density or length of flexible habitats and/or the site. One of the studies found it altered the non-mobile invertebrate community composition. Invertebrate richness/diversity (1 study): One replicated, randomized, paired sites, controlled study in France found that creating short flexible habitats on subtidal artificial structures did not increase the mobile or non-mobile invertebrate species richness on structure surfaces. POPULATION RESPONSE (3 STUDIES) Invertebrate abundance (3 studies): Three randomized, controlled studies (including two replicated and one paired sites study) in Australia and France found that creating short flexible habitats on subtidal artificial structures had mixed effects on the mobile and/or non-mobile invertebrate abundance on and around structure surfaces, depending on the survey week, species group, flexible habitat length, or site. One of the studies found no effect on mobile invertebrate abundance. Fish abundance (1 study): One randomized, controlled study in Australia found that creating short flexible habitats on subtidal artificial structures had mixed effects on the seahorse abundance on and around structures, depending on the survey week. BEHAVIOUR (0 STUDIES)Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3450https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3450Wed, 08 Sep 2021 15:19:19 +0100Collected Evidence: Collected Evidence: Create long flexible habitats (>50 mm) on subtidal artificial structures Five studies examined the effects of creating long flexible habitats on subtidal artificial structures on the biodiversity of those structures. Three studies were in estuaries in southeast Australia and two were in a port in the Netherlands. COMMUNITY RESPONSE (2 STUDIES) Overall community composition (2 studies): Two replicated, controlled studies (including one randomized study) in Australia and the Netherlands reported that long flexible habitats created on subtidal artificial structures supported macroalgae and non-mobile invertebrate or fish species that were absent from on and around structure surfaces without flexible habitats. Invertebrate community composition (1 study): One replicated, controlled study in the Netherlands reported that creating long flexible habitats on subtidal artificial structures altered the non-mobile invertebrate community composition on structure surfaces. Fish richness/diversity (1 study): One replicated, randomized, controlled study in Australia found that creating long flexible habitats on subtidal artificial structures had mixed effects on the fish species richness around structures, depending on fish presence when flexible habitats were created. POPULATION RESPONSE (4 STUDIES) Overall abundance (1 study): One replicated, controlled study in the Netherlands reported that long flexible habitats created on subtidal artificial structures supported higher combined macroalgae and invertebrate (mostly mussels) biomass than structure surfaces without flexible habitats, and found that deeper flexible habitats supported higher biomass than shallower ones. Invertebrate abundance (3 studies): Two of three studies (including two replicated, two controlled and one randomized study) in Australia and the Netherlands found that creating long flexible habitats on subtidal artificial structures had mixed effects on the mobile and/or non-mobile invertebrate abundance on and around structure surfaces, depending on the species group and survey week, or the flexible habitat length and density. One study reported that creating flexible habitats decreased the mussel abundance on structure surfaces but that the flexible habitats themselves supported higher biomass (mostly mussels) than the structure surfaces. Fish abundance (2 studies): Two randomized, controlled studies (including one replicated study) in Australia found that creating long flexible habitats on subtidal artificial structures had mixed effects on the abundance of fishes or seahorses on and around structures, depending on the species and fish presence when flexible habitats were created, or the survey week. BEHAVIOUR (1 STUDY) Use (1 study): One replicated study in Australia reported that long flexible habitats created on subtidal artificial structures were used by seahorses. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3451https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3451Thu, 09 Sep 2021 12:22:16 +0100Collected Evidence: Collected Evidence: Create grooves and small protrusions, ridges or ledges (1–50 mm) on subtidal artificial structures Three studies examined the effects of creating groove habitats and small protrusions, ridges or ledges on subtidal artificial structures on the biodiversity of those structures. Two studies were in marinas in northern Israel and the UK and one was on an open coastline in southeast Spain. COMMUNITY RESPONSE (2 STUDIES) Overall community composition (2 studies): One of two replicated, randomized, controlled studies (including one paired sites, before-and-after study) in Israel and the UK found that groove habitats and small ledges created on a subtidal artificial structure, along with holes and environmentally-sensitive material, altered the combined macroalgae and invertebrate community composition on structure surfaces. They also supported non-mobile invertebrate species that were absent from structure surfaces without added habitat features. One study found that creating grooves and small protrusions had mixed effects on the community composition, depending on the orientation of structure surfaces. Overall richness/diversity (2 studies): One of two replicated, randomized, controlled studies (including one paired sites, before-and-after study) in Israel and the UK found that creating groove habitats and small ledges on a subtidal artificial structure, along with holes and environmentally-sensitive material, increased the combined macroalgae and invertebrate species richness and diversity on structure surfaces. One study found that creating grooves and small protrusions did not increase the species diversity but had mixed effects on species richness, depending on the orientation of structure surfaces. POPULATION RESPONSE (1 STUDY) Overall abundance (1 study): One replicated, randomized, controlled study in the UK found that creating groove habitats and small protrusions on subtidal artificial structures had mixed effects on the combined macroalgae and non-mobile invertebrate abundance, depending on the orientation of structure surfaces. BEHAVIOUR (1 STUDY) Use (1 study): One replicated study in Spain reported that groove habitats and small protrusions created on subtidal artificial structures were colonized by macroalgae and non-mobile invertebrates. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3452https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3452Thu, 09 Sep 2021 14:53:56 +0100Collected Evidence: Collected Evidence: Create pit habitats (1–50 mm) on subtidal artificial structures One study examined the effects of creating pit habitats on subtidal artificial structures on the biodiversity of those structures. The study was on an open coastline in northern Israel. COMMUNITY RESPONSE (1 STUDY) Overall community composition (1 study): One replicated, controlled study in Israel found that pit habitats created on a subtidal artificial structure, along with holes, grooves and environmentally-sensitive material, altered the combined macroalgae and invertebrate community composition on structure surfaces. They also supported mobile and non-mobile invertebrate and fish species that were absent from a similar structure without the added habitat features. Overall richness/diversity (1 study): One replicated, controlled study in Israel found that creating pit habitats on a subtidal artificial structure, along with holes, grooves and environmentally-sensitive material, increased the combined macroalgae and invertebrate species diversity on structure surfaces. POPULATION RESPONSE (1 STUDY) Algal abundance (1 study): One replicated, controlled study in Israel reported that creating pit habitats on a subtidal artificial structure, along with holes, grooves and environmentally-sensitive material, had mixed effects on macroalgal abundances on structure surfaces, depending on the species group. Invertebrate abundance (1 study): One replicated, controlled study in Israel reported that creating pit habitats on a subtidal artificial structure, along with holes, grooves and environmentally-sensitive material, had mixed effects on invertebrate abundances on structure surfaces, depending on the species group. Fish abundance (1 study): One replicated, controlled study in Israel reported that creating pit habitats on a subtidal artificial structure, along with holes, grooves and environmentally-sensitive material, had mixed effects on fish abundances on and around structure surfaces, depending on the species group. BEHAVIOUR (0 STUDIES)Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3455https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3455Fri, 10 Sep 2021 10:31:49 +0100Collected Evidence: Collected Evidence: Manage or restrict harvesting of species on subtidal artificial structures Three studies examined the effects of managing or restricting harvesting of species on subtidal artificial structures on the biodiversity of those structures or on human behaviour likely to influence the biodiversity of those structures. The studies were on open coastlines in Italy. COMMUNITY RESPONSE (1 STUDY) Fish community composition (1 study): One site comparison study in Italy found different fish community composition around subtidal artificial structures with and without harvesting restrictions. The structure with harvesting restrictions supported species that were absent from unrestricted structures. Fish richness/diversity (1 study): One site comparison study in Italy found higher fish species richness around a subtidal artificial structure with harvesting restrictions compared with unrestricted structures. POPULATION RESPONSE (2 STUDIES) Invertebrate abundance (1 study): One site comparison study in Italy found similar sea urchin abundances around subtidal artificial structures with and without harvesting restrictions. Fish abundance (2 studies): One of two site comparison studies in Italy found similar total fish abundance around subtidal artificial structures with and without harvesting restrictions, but that abundances varied depending on the species and the survey date. One study found higher seabream abundances around the structure with harvesting restrictions. BEHAVIOUR (1 STUDY) Human behaviour change (1 study): One replicated, randomized study in Italy reported that legally restricting human access on subidal artificial structures did not prevent people from harvesting invertebrates and fishes on and around structures. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3457https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3457Mon, 13 Sep 2021 14:55:24 +0100Collected Evidence: Collected Evidence: Manage or restrict harvesting of species on intertidal artificial structures Two studies examined the effects of managing or restricting harvesting of species on intertidal artificial structures on the biodiversity of those structures or on human behaviour likely to influence the biodiversity of those structures. One study was on open coastlines in Italy, and one was in ports and on open coastlines in Gibraltar and southeast Spain. COMMUNITY RESPONSE (0 STUDIES)   POPULATION RESPONSE (1 STUDY) Invertebrate abundance (1 study): One replicated, site comparison study in Gibraltar and Spain reported that restricting human access on intertidal artificial structures did not increase the limpet abundance on structure surfaces. Invertebrate condition (1 study): One replicated, site comparison study in Gibraltar and Spain found that restricting human access on intertidal artificial structures resulted in larger limpets with more balanced sex ratios than unrestricted structures. BEHAVIOUR (1 STUDY) Human behaviour change (1 study): One replicated, randomized study in Italy reported that legally restricting human access on intertidal artificial structures did not prevent people from harvesting invertebrates and fishes on and around structures. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3458https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3458Mon, 13 Sep 2021 15:57:49 +0100Collected Evidence: Collected Evidence: Create short flexible habitats (1–50 mm) on intertidal artificial structures One study examined the effects of creating short flexible habitats on intertidal artificial structures on the biodiversity of those structures. The study was in an estuary in southeast Australia. COMMUNITY RESPONSE (1 STUDY) Overall community composition (1 study): One replicated, randomized, controlled study in Australia found that creating short flexible habitats on intertidal artificial structures altered the combined macroalgae and non-mobile invertebrate community composition on structure surfaces, and had mixed effects on the combined mobile invertebrate and fish community composition on and around structure surfaces during low tide, depending on the site. Invertebrate community composition (1 study): One replicated, randomized, controlled study in Australia found that creating short flexible habitats on intertidal artificial structures did not alter the mobile invertebrate community composition on and around structure surfaces during high tide. Fish community composition (1 study): One replicated, randomized, controlled study in Australia found that creating short flexible habitats on intertidal artificial structures did not alter the fish community composition on and around structure surfaces during high tide. Overall richness/diversity (1 study): One replicated, randomized, controlled study in Australia found that creating short flexible habitats on intertidal artificial structures decreased the combined macroalgae, invertebrate and fish species richness on and around structure surfaces during low tide. Invertebrate richness/diversity (1 study): One replicated, randomized, controlled study in Australia found that creating short flexible habitats on intertidal artificial structures had mixed effects on the mobile invertebrate species richness on and around structure surfaces during high tide, depending on the site. Fish richness/diversity (1 study): One replicated, randomized, controlled study in Australia found that creating short flexible habitats on intertidal artificial structures did not increase the fish species richness on and around structure surfaces during high tide. POPULATION RESPONSE (1 STUDY) Overall abundance (1 study): One replicated, randomized, controlled study in Australia found that creating short flexible habitats on intertidal artificial structures did not increase the combined mobile invertebrate and fish abundance on and around structure surfaces during low tide. Algal abundance (1 study): One replicated, randomized, controlled study in Australia found that creating short flexible habitats on intertidal artificial structures had mixed effects on the macroalgal abundance on structure surfaces, depending on the species group and site. Invertebrate abundance (1 study): One replicated, randomized, controlled study in Australia found that creating short flexible habitats on intertidal artificial structures had mixed effects on the abundance of non-mobile invertebrates on structure surfaces, and of mobile invertebrates during high tide, depending on the species group and site. Fish abundance (1 study): One replicated, randomized, controlled study in Australia found that creating short flexible habitats on intertidal artificial structures did not increase the fish abundance on and around structure surfaces during high tide. BEHAVIOUR (1 STUDY) Fish behaviour change (1 study): One replicated, randomized, controlled study in Australia found that creating short flexible habitats on intertidal artificial structures did not increase the number of bites fishes took of structure surfaces.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3459https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3459Mon, 13 Sep 2021 16:23:43 +0100Collected Evidence: Collected Evidence: Create long flexible habitats (>50 mm) on intertidal artificial structures One study examined the effects of creating long flexible habitats on intertidal artificial structures on the biodiversity of those structures. The study was in a port in the Netherlands. COMMUNITY RESPONSE (1 STUDY) Overall community composition (1 study): One replicated, controlled study in the Netherlands reported that creating long flexible habitats on intertidal artificial structures altered the combined macroalgae and non-mobile invertebrate community composition on structure surfaces. The flexible habitats themselves supported macroalgae, mobile and non-mobile invertebrates that were absent from structure surfaces without flexible habitats. POPULATION RESPONSE (0 STUDIES)   BEHAVIOUR (0 STUDIES)Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3460https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3460Tue, 14 Sep 2021 11:51:47 +0100Collected Evidence: Collected Evidence: Reduce the slope of intertidal artificial structures Two studies examined the effects of reducing the slope of intertidal artificial structures on the biodiversity of those structures. The studies were in an estuary in southeast Australia. COMMUNITY RESPONSE (1 STUDY) Overall richness/diversity (1 study): One before-and-after study in Australia reported that reducing the slope of an intertidal artificial structure, along with creating rock pools, increased the combined macroalgae, invertebrate and fish species richness on the structure. POPULATION RESPONSE (1 STUDY) Algal abundance (1 study): One replicated, controlled study in Australia found that reducing the slope of an intertidal artificial structure did not increase the macroalgal abundance on structure surfaces. Invertebrate abundance (1 study): One replicated, controlled study in Australia found that reducing the slope of an intertidal artificial structure did not increase the oyster or mobile invertebrate abundance on structure surfaces. BEHAVIOUR (0 STUDIES)Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3461https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3461Tue, 14 Sep 2021 12:39:58 +0100Collected Evidence: Collected Evidence: Create small protrusions (1–50 mm) on intertidal artificial structures Two studies examined the effects of creating small protrusions on intertidal artificial structures on the biodiversity of those structures. Both studies were on island coastlines in the Singapore Strait. COMMUNITY RESPONSE (2 STUDIES) Overall community composition (2 studies): One of two replicated, randomized, controlled studies in Singapore found that creating small protrusions on intertidal artificial structures did not alter the combined macroalgae and invertebrate community composition on structure surfaces. One study found that creating small protrusions, along with grooves, small ridges and pits, had mixed effects on the community composition, depending on the site and the size and arrangement of protrusions and other habitats. Overall richness/diversity (2 studies): Two replicated, randomized, controlled studies in Singapore found that creating small protrusions on intertidal artificial structures, along with grooves, small ridges and pits in one study, increased the combined macroalgae and invertebrate species richness on structure surfaces. One of the studies found that varying the size and arrangement of protrusions and other habitats had mixed effects on species richness, depending on the shore level. POPULATION RESPONSE (2 STUDIES) Overall abundance (2 studies): One of two replicated, randomized, controlled studies in Singapore found that creating small protrusions on intertidal artificial structures did not increase the combined macroalgae and invertebrate abundance on structure surfaces. One study found that creating small protrusions, along with grooves, small ridges and pits, had mixed effects on abundance, depending on the shore level, site, and the size and arrangement of protrusions and other habitats. BEHAVIOUR (0 STUDIES)Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3462https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3462Tue, 14 Sep 2021 14:36:13 +0100
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust