Collected Evidence: Collected Evidence: Create artificial reefs Twelve studies examined the effects of creating artificial reefs on subtidal benthic invertebrate populations. Three studies were in the Mediterranean Sea (Italy); three were in the North Atlantic Ocean (USA, Portugal, France); one in the Firth of Lorn (UK); two in the North Pacific Ocean (USA); one in the English Channel (UK), one in the Gulf of Mexico (USA); and one in the Yellow Sea (China).   COMMUNITY RESPONSE (8 STUDIES) Overall community composition (3 studies): Two site comparison studies (one replicated) in the English Channel and North Atlantic Ocean found that invertebrate communities growing on artificial reefs were different to that of natural reefs. One replicated study the North Pacific Ocean found that invertebrate community composition changed over time on an artificial reef. Overall richness/diversity (6 studies): Two site comparison studies (one replicated) in the Mediterranean Sea and North Atlantic Ocean found that invertebrate species richness and/or diversity on the artificial reef or in the sediments inside and adjacent to the reef area were lower compared to on natural reefs or in nearby natural sediments. One replicated, site comparison study in the Gulf of Mexico found that artificial breakwaters had more species of nekton compared to adjacent mudflats. One site comparison study in English Channel recorded 263 taxa on the artificial reef, including at least nine not recorded on nearby natural reefs but excluding at least 39 recorded on natural reefs. One replicated study in the North Pacific Ocean found a 49% increase in species richness over five years on an artificial reef. One study in the North Atlantic Ocean found that artificial reefs hosted at least five species of large mobile invertebrates. Mollusc richness/diversity (1 study): One replicated, site comparison study in the Mediterranean Sea found that mollusc species richness and diversity were lower on artificial reefs compared to natural reefs. Worm community composition (1 study): One replicated, site comparison study in the North Pacific Ocean found that polychaete worm community composition was similar at one of two artificial reefs compared to a natural reef. Worm richness/diversity (1 study): One replicated, site comparison study in the North Pacific Ocean found that polychaete worm species richness and diversity were similar at one of two artificial reefs compared to a natural reef, but lower at the second artificial reef. POPULATION RESPONSE (12 STUDIES) Overall abundance (10 studies): One of two site comparison studies (one replicated) in the Mediterranean Sea found that abundance of invertebrates in the sediment was lower at the reef sites than in nearby natural sediments, but increased in the sediments directly adjacent to the reefs, while the other study found that abundance was similar in the sediments inside and directly adjacent to the artificial reef area, but lower than in nearby natural sediments. Of five site comparison studies (four replicated) in the North Pacific Ocean, the North Atlantic Ocean, the Gulf of Mexico and the Yellow Sea, one found that invertebrate biomass was higher on the artificial reef than in adjacent natural sediments, two that invertebrate abundance and biomass and nekton abundance were similar on artificial reefs and natural habitats (reef; mudflat), and two found mixed effects on abundances of invertebrates. One site comparison study in the English Channel reported that the abundances of some species were lower on the artificial reef compared to natural reefs. One replicated study in the North Pacific Ocean reported an 86% increase in invertebrate abundance growing on an artificial reef over five years. One study in the North Atlantic Ocean found that two of five species at one artificial reef, and three of seven at another, were recorded during >50% of dives. Overall condition (1 study): One replicated, site comparison study in the Yellow Sea found mixed effects of creating an artificial reef on the sizes of mobile invertebrates. Mollusc abundance (1 study): One replicated, site comparison study in the Mediterranean Sea found that mollusc abundance was lower on artificial reefs compared to natural reefs. Crustacean abundance (1 study): One replicated, site comparison in the Firth of Lorn found that abundances of edible crabs and velvet swimming crabs were typically higher on artificial than natural reefs. OTHER (1 STUDY) Biological production (1 study): One site comparison study in North Atlantic Ocean found that secondary production was higher from invertebrates growing on an artificial reef than from invertebrates in adjacent natural sediments. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2258https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2258Wed, 23 Oct 2019 10:26:30 +0100Collected Evidence: Collected Evidence: Create artificial reefs of different 3-D structure and material used Eight studies examined the effects of creating artificial reefs of different typology on subtidal benthic invertebrate populations. One study was in the English Channel (UK), three in the Mediterranean Sea (Israel, Italy), one in the North Atlantic Ocean (USA), one in the Firth of Lorn (UK), one in the North Pacific Ocean (USA), and one in the Gulf of Mexico (USA).   COMMUNITY RESPONSE (6 STUDIES) Overall community composition (3 studies): One controlled study in the English Channel found that artificial reef modules made of scrap tyres developed a similar sessile invertebrate community composition as traditional artificial concrete modules. Two controlled studies (one replicated) in the Mediterranean Sea found that pyramids reefs made of “sea-friendly” concrete developed different invertebrate community compositions compared to reefs of either traditional concrete plinth-pole structures or bundles of traditional concrete tubes. Overall richness/diversity (5 studies): Four controlled studies (three replicated) in the Mediterranean Sea, the North Pacific Ocean, and the Gulf of Mexico found no differences in overall invertebrate richness/diversity or combined mobile invertebrate and fish richness between reef structure and/or material. One controlled study in the Mediterranean Sea found that invertebrate species richness was lower on “sea-friendly” pyramid reefs compared to bundle reefs of traditional concrete. POPULATION RESPONSE (7 STUDIES) Overall abundance (5 studies): Four controlled studies (three replicated) in the English Channel, the Mediterranean Sea, the North Pacific Ocean, and the Gulf of Mexico found no differences in overall invertebrate abundances or combined mobile invertebrate and fish abundance between reef structure and/or material. One controlled study in the Mediterranean Sea found that “sea-friendly” concrete pyramids had lower abundance compared to plinth-pole structures after two years, but higher after three. Crustacean abundance (2 studies): One replicated, controlled study in the North Atlantic Ocean found that artificial reefs made of limestone boulders, gravel concrete aggregate, or tyre-concrete aggregate had similar abundance of spiny lobsters. One replicated, controlled study in the Firth of Lorn found that the complexity of artificial reef modules had mixed effects on the abundance of edible crab and velvet swimming crab. Mollusc abundance (1 study): One replicated, controlled study in the Gulf of Mexico found that breakwaters made of bags of oyster shells recruited more oysters and ribbed mussels compared to “ReefBall” breakwaters. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2259https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2259Wed, 23 Oct 2019 10:39:51 +0100Collected Evidence: Collected Evidence: Locate artificial reefs near aquaculture systems to benefit from nutrient run-offs Two studies examined the effects of locating artificial reefs near aquaculture systems to benefit from nutrient run-offs on subtidal benthic invertebrate populations. One study was in the Gulf of Aqaba (Israel and Jordan), and one in the Mediterranean Sea (Spain).   COMMUNITY RESPONSE (1 STUDY) Overall community composition (1 study): One controlled study in the Mediterranean Sea found that an artificial reef located under aquaculture cages had similar invertebrate community composition to artificial reefs located at sites without aquaculture cages. POPULATION RESPONSE (1 STUDY) Overall abundance (1 study): One controlled study in the Gulf of Aqaba found that an artificial reef located at an aquaculture site had similar invertebrate biomass growing on it compared to an artificial reef located at a site without aquaculture cages. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2260https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2260Wed, 23 Oct 2019 10:51:01 +0100Collected Evidence: Collected Evidence: Place anthropogenic installations (e.g: windfarms) in an area such that they create artificial habitat and reduce the level of fishing activity We found no studies that evaluated the effects of placing anthropogenic installations in an area such that they reduce the level of fishing activity on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2261https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2261Wed, 23 Oct 2019 10:51:55 +0100Collected Evidence: Collected Evidence: Repurpose obsolete offshore structures to act as artificial reefs One study examined the effects of repurposing obsolete offshore structures on subtidal benthic invertebrates. The study was of a sunken oil rig in the Mediterranean Sea (Italy).   COMMUNITY RESPONSE (1 STUDY) Overall species richness/diversity (1 study): One study in the Mediterranean Sea recorded at least 53 invertebrate species having colonised a sunken oil rig after 30 years. Species included 14 species of molluscs, 14 species of worms, and 11 species of crustaceans. POPULATION RESPONSE (0 STUDIES)Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2262https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2262Wed, 23 Oct 2019 10:57:16 +0100
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust