Collected Evidence: Collected Evidence: Buffer in-field ponds We have captured no evidence for the effects of buffering in-field ponds on farmland wildlife. 'No evidence' for an action means we have not yet found any studies that directly and quantitatively tested this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.  Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F97https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F97Mon, 24 Oct 2011 21:48:25 +0100Collected Evidence: Collected Evidence: Make selective use of spring herbicidesA replicated, controlled, randomized study in the UK found that spring herbicides had some benefits for beneficial weeds and arthropods.  Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F98https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F98Mon, 24 Oct 2011 21:50:21 +0100Collected Evidence: Collected Evidence: Provide buffer strips alongside water courses (rivers and streams) Three studies (including one replicated site comparison) from the Netherlands and the UK reported that the provision of riparian buffer strips had a positive influence on plant, invertebrate and bird diversity or abundance, and supported vegetation associated with habitats preferred by water voles. Two replicated site comparison studies from France and Ireland found that the provision of riparian buffer strips on farms did not result in an increase in the number of plant species when compared to farms without buffer strips. One replicated site comparison study found ground beetle diversity was higher in grazed riparian zones and narrow fenced strips than in wide riparian buffer strips. However the ground beetle assemblages in wide riparian buffer strips were more distinct from the adjacent pasture field assemblages than either the grazed riparian zones or narrow fenced strips. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F120https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F120Tue, 01 Nov 2011 21:03:36 +0000Collected Evidence: Collected Evidence: Use organic rather than mineral fertilizers Seventeen studies (including three reviews) from Austria, Belgium, Germany, Ireland, Switzerland and the UK looked at the effects of using organic rather than mineral fertilizers. Fourteen studies (including two reviews and seven replicated and controlled studies, of which four also randomized) from Austria, Belgium, Germany, Ireland, Switzerland and the UK found that areas treated with organic rather than mineral fertilizers supported higher plant diversity and cover or species richness, increased earthworm abundance or diversity, biomass and density and increased abundance and/or species richness of some or all invertebrates investigated. A literature review found organic fertilizers without pesticides produced highest earthworm biomass. A small trial in Belgium found more predatory beetles on an arable field two years after organic fertilizer application than on a control plot. One randomized, replicated, controlled trial in the UK found that using organic rather than mineral fertilizers did not affect the abundance of three weed species. A replicated study from Ireland found that the application of farmyard manure had no long-term effect on invertebrates, whilst two studies from the UK found the increase in arthropod predators and springtails was only seen at a local not a field scale. A review found one study from the UK reporting that heavy applications of slurry can be toxic to common earthworms. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F134https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F134Thu, 17 Nov 2011 21:20:02 +0000Collected Evidence: Collected Evidence: Reduce fertilizer, pesticide or herbicide use generally Of 38 individual studies from Austria, the Czech Republic, Denmark, Finland, France, Germany, Ireland, the Netherlands, Sweden and the UK investigating the effects of reducing fertilizers, pesticides or herbicides, 34 studies (23 replicated, of which six also controlled and randomized, one review and one systematic review) found benefits to some invertebrates, plants, or farmland birds. Twenty-five studies (16 replicated, of which seven also randomized and controlled and one review) found negative, mixed, minimal or no effects on some invertebrates, farmland birds or plants. Ten studies (six replicated, controlled studies of which two randomized) from three countries found positive effects of reducing or stopping pesticide applications on invertebrates, plants, or birds. Eight studies (two replicated controlled and randomized, one paired before-and-after trial) from four countries found inconsistent or no effects on some invertebrates or birds. Ten studies (nine replicated, five also controlled and a European systematic review) from four countries found positive effects of reducing or stopping herbicide use on plants, invertebrates, and birds. Five replicated studies (two also controlled and randomized) from three countries found no or mixed effects on birds, invertebrates and plants. Five studies (three replicated controlled of which two randomized) from four countries found positive effects of reducing or stopping fertilizer applications on invertebrates, Eurasian skylark, or plants. Four studies (three replicated, controlled and randomized) from two countries found reducing or stopping fertilizer inputs had no, or no consistent effects on some invertebrates and farmland birds. Two studies from the UK (one replicated) found plots where fertilizer inputs were not reduced tended to have higher earthworm biomass or abundance. Fifteen studies (three replicated controlled of which one also randomized, five site comparisons and one review) from seven countries looked at the effects of reducing or stopping applications of two or more inputs: pesticides, herbicides, or fertilizers. Thirteen studies found positive effects of reducing two or more inputs on some or all invertebrates, plants, soil organisms, and birds studied. Seven studies found negative or no effects of reducing combinations of inputs on some invertebrates, plants or birds.  Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F139https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F139Fri, 18 Nov 2011 20:06:45 +0000Collected Evidence: Collected Evidence: Restrict certain pesticides A small scale study in the UK found that using the fungicides Propiconazole and Triadimefon reduced chick food insect abundance less than using Pyrazophos. A replicated, controlled trial in Switzerland found that applying metaldehyde slug pellets in a 50 cm band along the field edge adjacent to wildflower strips provided equivalent crop protection to broadcasting the pellets across the whole field.  Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F565https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F565Fri, 28 Sep 2012 15:37:14 +0100Collected Evidence: Collected Evidence: Leave headlands in fields unsprayed (conservation headlands) Twenty-two studies from 14 replicated, controlled experiments (of which two randomized) including two reviews, from a total of 32 studies from 20 experiments (of which 17 replicated, controlled) including three reviews from Finland, Germany, the Netherlands, Sweden and the UK that investigated species richness and diversity of farmland wildlife found that conservation headlands contained higher species richness or diversity of invertebrates or plants than other habitat types. Twelve studies (including a review) from ten replicated experiments (of which eight controlled and three controlled and randomized) found that some or all invertebrates or plants investigated did not have higher species richness or diversity on conservation headlands compared to other habitat types. This included both replicated, controlled studies investigating bee diversity. Two replicated studies from the UK found that unfertilized conservation headlands had more plant species than fertilized conservation headlands. Positive effects of conservation headlands on abundances or behaviours of some or all species investigated were found by 27 studies from 15 replicated experiments (of which 13 controlled) including five reviews out of a total of 36 studies from 20 experiments (17 replicated, controlled) including five reviews from Finland, Germany, the Netherlands, Sweden and the UK that investigated birds (some studies looked at number of visits), mammals (some studies looked at number of visits), invertebrates and plant abundance/cover. One review from the UK found a positive effect on grey partridge populations but did not separate the effects of several other interventions including conservation headlands. Nineteen studies from 13 replicated (12 controlled) experiments and a review from Finland, Germany, the Netherlands and the UK found that some or all species of birds, invertebrates or plants investigated were at similar, or lower, abundances on conservation headlands compared to other management. One review from the UK and a study in Germany found conservation headlands had a positive effect on plants and some, but not all invertebrates, or rare arable weeds but did not specify how. All eight studies from the UK and Sweden that investigated species’ productivity, from three replicated (two controlled) experiments including two reviews found that grey partridge productivity or survival was higher in conservation headlands (or in sites with conservation headlands), compared to other management. One replicated study from the UK found that conservation headlands did not increase the proportion of young grey partridges in the population. A before-and-after study from the UK found that some invertebrates in conservation headlands survived pesticide applications to neighbouring fields. A review found crop margins reduce the effects of spray drift on butterflies. A replicated study from Germany and a review found that conservation headlands appeared to prevent or reduce the establishment and spread of pernicious weeds. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F652https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F652Wed, 31 Oct 2012 09:36:44 +0000Collected Evidence: Collected Evidence: Reduce chemical inputs in grassland management A total of 16 studies (including five reviews) investigated the effects of reducing inputs in permanent grasslands. Six studies from the Netherlands, Switzerland and the UK (including one review and four replicated studies of which one was also controlled and one a randomized and controlled before-and-after trial) found that stopping fertilizer inputs in permanent grassland resulted in an increase in plant species richness, reduced the rate of plant species loss and attracted a higher abundance or species richness of some or all invertebrates studied. One review from the Netherlands found that low fertilizer input grasslands favour common meadow bird species. One review found a study showing that densities of some invertebrates were higher in unfertilized plots compared with those receiving nitrogen inputs. Two replicated, controlled trials from the Czech Republic and the UK (one randomized) found that applying fertilizer to permanent grasslands reduced plant species richness or diversity and that the effects on plant communities were still apparent 16 years after the cessation of fertilizer application. Four studies from Ireland, the Netherlands and the UK (including two replicated trials of which one randomized and one controlled and a review) found that reducing fertilizer inputs on grassland had no clear or rapid effect on plant species richness. A review found no clear effect of reducing fertilizer inputs on the density of soil-dwelling invertebrates. One replicated study found that fertilizer treatment only affected seed production of a small number of meadow plants. One replicated study from the UK found lower invertebrate abundance on plots with reduced fertilizer inputs but the differences were not significant.  Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F694https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F694Sat, 01 Dec 2012 17:52:25 +0000
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust