Collected Evidence: Collected Evidence: Add inorganic fertilizer before/after planting non-woody plants: freshwater wetlands Four studies evaluated the effects, on vegetation, of adding inorganic fertilizer to freshwater wetlands planted with emergent, non-woody plants. Two studies were in the USA, one was in the Netherlands and one was in Ireland. One of the studies in the USA was in a greenhouse. VEGETATION COMMUNITY   VEGETATION ABUNDANCE Individual species abundance (1 study): One replicated, paired, controlled study of lakeshores planted with bulrushes Scirpus spp. in the Netherlands found that fertilized and unfertilized plots contained a similar amount (density and biomass) of each bulrush species over three growing seasons. VEGETATION STRUCTURE Individual plant size (2 studies): Two replicated, controlled studies (one also paired) in the USA found that adding fertilizer to mineral soil increased the biomass and/or number of shoots of tussock sedge Carex stricta seedlings, 2–3 months after planting. However, in both studies, adding fertilizer had no significant or clear effect on sedge size in plots amended with compost and/or topsoil. OTHER Growth (1 study): One replicated, paired, controlled, before-and-after study in tubs of mining waste in Ireland found that adding fertilizer increased growth of planted sweetgrass Glyceria fluitans in one case but had no significant effect in another. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3304https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3304Sun, 11 Apr 2021 08:57:08 +0100Collected Evidence: Collected Evidence: Add inorganic fertilizer before/after planting non-woody plants: brackish/saline wetlands Seven studies evaluated the effects, on vegetation, of adding inorganic fertilizer to brackish/saline wetlands planted with emergent, non-woody plants. Four studies were in the USA. Two of these were based in the same marsh, but used different experimental set-ups. Two studies were in Canada. One study was in China. VEGETATION COMMUNITY   VEGETATION ABUNDANCE Overall abundance (2 studies): One replicated, randomized, paired, controlled study in intertidal brackish marshes in Canada found that adding fertilizer when planting wetland herbs typically had no significant effect on total live vegetation biomass, after two growing seasons. One replicated, paired, controlled, before-and-after study in salt-contaminated bogs in Canada found that overall vegetation biomass and cover were greater in fertilized than unfertilized plots, one year after introducing salt marsh vegetation. Individual species abundance (6 studies): Six studies quantified the effect of this action on the abundance of individual plant species. For example, three replicated, randomized, paired, controlled studies in intertidal areas in the USA found that the abundance of cordgrasses Spartina spp. was typically similar in fertilized and unfertilized plots, 1–2 growing seasons after planting. This was true for density, biomass and/or cover. However, one controlled study on former borrow pits in the USA found that cordgrass Spartina spp. biomass was typically greater in fertilized than unfertilized plots, one growing season after planting. This study also found that fertilization typically reduced black rush Juncus roemarianus biomass, one growing season after planting. VEGETATION STRUCTURE Height (6 studies): Five replicated, controlled studies (four also paired, three also randomized) in brackish/saline wetlands in the USA, China and Canada found that adding fertilizer had no significant effect on the height of planted/sown wetland herbs after 1–2 growing seasons. One controlled study on former borrow pits in the USA found that fertilized smooth cordgrass Spartina alterniflora was taller than unfertilized smooth cordgrass, two growing seasons after planting. OTHER Survival (4 studies): Three replicated, randomized, paired, controlled studies in intertidal areas in the USA and Canada found that adding fertilizer had no significant effect on the survival of planted wetland herbs over 1–2 growing seasons. One controlled study on former borrow pits in the USA reported that adding standard fertilizer to planting holes reduced the survival of planted big cordgrass Spartina cynosuroides, after one growing season. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3305https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3305Sun, 11 Apr 2021 08:57:23 +0100Collected Evidence: Collected Evidence: Add inorganic fertilizer before/after planting trees/shrubs: freshwater wetlands Two studies evaluated the effects, on vegetation, of adding inorganic fertilizer to freshwater wetlands planted with trees/shrubs. Both studies were in the USA. VEGETATION COMMUNITY                  VEGETATION ABUNDANCE   VEGETATION STRUCTURE Height (1 study): One replicated, paired, controlled study in the USA found that adding fertilizer had no significant effect, after two years, on the height of tree saplings planted into floating peat bags. Diameter, perimeter, area (1 study): The same study found that adding fertilizer had no significant effect, after two years, on the diameter of two of three tree species planted into floating peat bags. However, fertilized pond apple Annona glabra saplings had thicker stems than unfertilized saplings. OTHER Growth (1 study): One replicated, randomized, controlled study in the USA found that adding fertilizer increased the growth rate of baldcypress Taxodium distichum seedlings planted into a marsh. This was true for both diameter and height growth. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3306https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3306Sun, 11 Apr 2021 08:57:33 +0100Collected Evidence: Collected Evidence: Add inorganic fertilizer before/after planting trees/shrubs: brackish/saline wetlandsWe found no studies that evaluated the effects, on vegetation, of adding inorganic fertilizer to brackish/saline wetlands planted with trees/shrubs.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3307https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3307Sun, 11 Apr 2021 08:57:43 +0100Collected Evidence: Collected Evidence: Add below-ground organic matter before/after planting non-woody plants: freshwater wetlands Seven studies evaluated the effects, on vegetation, of adding below-ground organic matter to freshwater wetlands planted with emergent, non-woody plants. All seven studies were in the USA. Two of the studies were in a greenhouse. VEGETATION COMMUNITY Overall richness/diversity (1 study): One replicated study of marshes alongside a stream in the USA found that adding compost before planting wetland herbs typically reduced overall plant species richness over the following three growing seasons. Richness was negatively related to the amount of soil organic matter in plots. VEGETATION ABUNDANCE Overall abundance (1 study): One replicated study of marshes alongside a stream in the USA found that adding compost before planting wetland herbs had no significant effect on total vegetation biomass after three growing seasons. Biomass was not significantly related to the amount of soil organic matter in plots. Characteristic plant abundance (1 study): One replicated, randomized, paired, controlled, before-and-after study in an experimental wet basin in the USA found that adding sawdust to plots before sowing a mixture of target sedge meadow species had no significant effect on the density of target species overall or target grass-like species. Adding sawdust sometimes affected the density of target forbs, depending on the presence/diversity of a nurse crop. Individual species abundance (2 studies): Two replicated, randomized, paired, controlled studies in wetlands in the USA quantified the effect of this action on the abundance of individual plant species. One study found that incorporating woodchips into soil mounds before planting tussock sedge Carex stricta reduced total tussock sedge cover after two growing seasons. The other study reported varying effects of sawdust addition on the abundance of individual plant species, depending on factors such as the species and presence/diversity of a nurse crop. VEGETATION STRUCTURE Individual plant size (4 studies): Three replicated, controlled studies (one also paired) in the USA found that mixing compost into the substrate before planting tussock sedge Carex stricta seedlings typically increased the biomass and/or number of shoots they developed over 2–3 months. However, in one of the studies, compost typically had no significant effect on top of other soil amendments. One replicated, randomized, paired, controlled study in a wetland in the USA found that incorporating woodchips into soil mounds had no significant effect on the biomass of planted tussock sedge Carex stricta, over two growing seasons. OTHER Germination/emergence (1 study): One replicated, randomized, paired, controlled study in an experimental wet basin in the USA found that seeds of mixed sedge meadow species had a similar germination rate, over 16 weeks after sowing, in plots with or without added sawdust. Survival (2 studies): One replicated, randomized, controlled study in an excavated wetland in the USA found that planted lurid sedge Carex lurida tubers had a higher survival rate, after one year, in plots that had been amended with leaf litter than in unamended plots. One replicated, randomized, paired, controlled study in a wetland in the USA found that incorporating woodchips into soil mounds increased survival of planted tussock sedge Carex stricta in a drier area, but reduced its survival in a wetter area. Growth (1 study): One replicated, randomized, paired, controlled study in a wetland in the USA found that incorporating woodchips into soil mounds had no significant effect on the growth rate of planted tussock sedge Carex stricta, over two growing seasons. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3308https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3308Sun, 11 Apr 2021 09:50:48 +0100Collected Evidence: Collected Evidence: Add below-ground organic matter before/after planting non-woody plants: brackish/saline wetlands Six studies evaluated the effects, on vegetation, of adding below-ground organic matter to brackish/saline wetlands planted with emergent, non-woody plants. Five studies were in the USA and one was in China. Two studies were in the same marsh, but used different experimental set-ups. VEGETATION COMMUNITY   VEGETATION ABUNDANCE Individual species abundance (5 studies): Three replicated, randomized, controlled studies in the USA found that adding organic matter before/after planting cordgrasses Spartina spp. typically had no significant effect on cordgrass abundance (biomass and/or density) after 1–2 growing seasons. One replicated, paired, controlled study in an estuary in the USA found that mixing kelp compost into the sediment before planting California cordgrass Spartina foliosa increased its density, three growing seasons later. One replicated, controlled, before-and-after study in an estuary in China found that mixing reed debris into the sediment before sowing seablite Suaeda salsa increased its biomass, but not its density, five months later. VEGETATION STRUCTURE Individual plant size (1 study): One replicated, randomized, paired, controlled study in an estuary in the USA found that tilling compost into plots before planting salt marsh vegetation typically increased the overall size of plants surviving after 1–2 growing seasons. Size was reported as a combination of height and lateral spread. Height (5 studies): Four replicated, controlled studies in the USA and China found that adding organic matter before/after introducing salt marsh plants (cordgrasses Spartina spp. or seablite Suaeda salsa) had no significant effect on their height after 1–2 growing seasons. One replicated, paired, controlled study in an estuary in the USA found that mixing kelp compost into the sediment before planting California cordgrass Spartina foliosa increased its height, three growing seasons later. OTHER Survival (1 study): One replicated, randomized, paired, controlled study in an estuary in the USA found that plots amended with kelp compost supported a higher survival rate of planted salt marsh vegetation over 1–2 growing seasons, with a similar but typically insignificant trend for survival rates of individual species. Growth (1 study): One replicated, randomized, controlled study in a greenhouse in the USA found that adding alginate after planting cordgrasses had no significant effect on the average number of shoots per plant, nine weeks later. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3309https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3309Sun, 11 Apr 2021 09:50:58 +0100Collected Evidence: Collected Evidence: Add below-ground organic matter before/after planting trees/shrubs: freshwater wetlands One study evaluated the effects, on vegetation, of adding below-ground organic matter to freshwater wetlands planted with trees/shrubs. The study was in the USA. VEGETATION COMMUNITY Community composition (1 study): One replicated, randomized, paired, controlled study in a created wetland in the USA found that amongst plots planted with tree seedlings, those amended with large amounts compost contained a plant community characteristic of drier conditions, three years later, than the community in unamended plots. The lowest compost dose had no significant effect on this outcome. Overall richness/diversity (1 study): The same study found that amongst plots planted with tree seedlings, those amended with a large amount of compost had lower plant species richness and diversity, three years later, than unamended plots. Lower compost doses had no significant effect on either outcome. VEGETATION ABUNDANCE Overall abundance (1 study): One replicated, randomized, paired, controlled study in a created wetland in the USA found that amongst plots planted with tree seedlings, those amended with compost supported a similar overall vegetation biomass, three years later, to unamended plots. VEGETATION STRUCTURE Individual plant size (1 study): One replicated, randomized, paired, controlled study in a created wetland in the USA found that birch Betula saplings were larger, three years after planting seedlings, in plots amended with large amounts of compost than in unamended plots. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3310https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3310Sun, 11 Apr 2021 09:51:11 +0100Collected Evidence: Collected Evidence: Add below-ground organic matter before/after planting trees/shrubs: brackish/saline wetlands One study evaluated the effects, on vegetation, of adding below-ground organic matter to brackish/saline wetlands planted with trees/shrubs. The study was in Brazil. VEGETATION COMMUNITY   VEGETATION ABUNDANCE   VEGETATION STRUCTURE   OTHER Survival (1 study): One replicated, randomized, controlled study in a coastal swamp in Brazil reported that adding manure to plots planted with tree seedlings had mixed effects on their survival over three years, depending on the species of tree and dose of manure. Growth (1 study): The same study reported that adding manure to plots planted with tree seedlings had mixed effects on their growth over three years, depending on the species of tree and dose of manure. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3311https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3311Sun, 11 Apr 2021 09:51:23 +0100Collected Evidence: Collected Evidence: Add surface mulch before/after planting non-woody plants: freshwater wetlands One study evaluated the effects, on vegetation, of mulching freshwater wetlands planted with emergent, non-woody plants. The study was in Australia. VEGETATION COMMUNITY   VEGETATION ABUNDANCE Herb abundance (1 study): One replicated, randomized, paired, controlled study in floodplain swamps in Australia found that mulching with woodchips before planting native understory herbs either increased or had no significant effect on their overall cover, one year later. Individual species abundance (1 study): The same study found that mulching with woodchips before planting native understory herbs reduced the cover of one problematic species (common reed Phragmites australis) one year later, but had no significant effect on another (reed canarygrass Phalaris arundinacea). VEGETATION STRUCTURECollected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3312https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3312Sun, 11 Apr 2021 12:05:44 +0100Collected Evidence: Collected Evidence: Add surface mulch before/after planting non-woody plants: brackish/saline wetlands One study evaluated the effects, on vegetation, of mulching brackish/saline wetlands planted with emergent, non-woody plants. The study was in Canada. VEGETATION COMMUNITY   VEGETATION ABUNDANCE Overall abundance (1 study): One replicated, randomized, paired, controlled study in intertidal brackish marshes in Canada found that adding surface mulch after planting wetland herbs typically had no significant effect on total live vegetation biomass, two growing seasons later. Individual species abundance (1 study): The same study found that adding surface mulch increased the cover of one of two planted herb species (creeping alkaligrass Puccinellia phryganodes) but had no significant effect on cover of the other species (estuary sedge Carex subspathacea). Cover was monitored over the second growing season after planting/mulching. VEGETATION STRUCTURE   OTHER Survival (1 study): One replicated, randomized, paired, controlled study in intertidal brackish marshes in Canada found that adding surface mulch had no significant effect on the survival of two of two planted herb species, after two growing seasons. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3313https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3313Sun, 11 Apr 2021 12:05:55 +0100Collected Evidence: Collected Evidence: Add surface mulch before/after planting trees/shrubs: freshwater wetlands One study evaluated the effects, on vegetation, of mulching freshwater wetlands planted with trees/shrubs. The study was in Australia. VEGETATION COMMUNITY   VEGETATION ABUNDANCE Tree/shrub abundance (1 study): One replicated, randomized, paired, controlled study in floodplain swamps in Australia found that mulching with woodchips before planting native shrubs had no significant effect on their overall cover, one year later. Individual species abundance (1 study): The same study found that mulching with woodchips before planting swamp gum Eucalyptus camphora seedlings had no significant effect on swamp gum cover, one year later. Mulching reduced cover of the problematic herb species in one of two swamps, but had no significant effect in the other. VEGETATION STRUCTURE Height (1 study): One replicated, randomized, paired, controlled study in floodplain swamps in Australia found that planted swamp gum Eucalyptus camphora seedlings reached a similar height, after one year, in mulched and unmulched plots. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3314https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3314Sun, 11 Apr 2021 12:06:05 +0100Collected Evidence: Collected Evidence: Add surface mulch before/after planting trees/shrubs: brackish/saline wetlandsWe found no studies that evaluated the effects, on vegetation, of mulching brackish/saline wetlands planted with trees/shrubs.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3315https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3315Sun, 11 Apr 2021 12:06:27 +0100Collected Evidence: Collected Evidence: Add cover other than mulch before/after planting non-woody plants: freshwater wetlands One study evaluated the effects, on vegetation, of adding cover other than mulch to freshwater wetlands planted with emergent, non-woody plants. The study was in Australia. VEGETATION COMMUNITY   VEGETATION ABUNDANCE Tree/shrub abundance (1 study): One replicated, randomized, paired, controlled study in floodplain swamps in Australia found that covering plots with plastic or jute mats before planting native understory herbs increased their overall cover, one year later. Individual species abundance (1 study): The same study found that covering plots with plastic or jute mats before planting native understory herbs reduced the cover of two problematic herb species, one year later. VEGETATION STRUCTURECollected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3316https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3316Sun, 11 Apr 2021 12:19:16 +0100Collected Evidence: Collected Evidence: Add cover other than mulch before/after planting non-woody plants: brackish/saline wetlandsWe found no studies that evaluated the effects, on vegetation, of adding cover other than mulch to brackish/saline wetlands planted with emergent, non-woody plants.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3317https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3317Sun, 11 Apr 2021 12:19:32 +0100Collected Evidence: Collected Evidence: Add cover other than mulch before/after planting trees/shrubs: freshwater wetlands One study evaluated the effects, on vegetation, of adding cover other than mulch to freshwater wetlands planted with trees/shrubs. The study was in Australia. VEGETATION COMMUNITY   VEGETATION ABUNDANCE Tree/shrub abundance (1 study): One replicated, randomized, paired, controlled study in floodplain swamps in Australia found that covering plots with plastic or jute mats before planting native shrubs had no significant effect on their overall cover, one year later. Individual species abundance (1 study): The same study found that covering plots with plastic or jute mats before planting swamp gum Eucalyptus camphora seedlings had no significant effect on swamp gum cover, one year later. Covering plots with mats also reduced cover of two problematic herb species. VEGETATION STRUCTURE                                          Height (1 study): One replicated, randomized, paired, controlled study in floodplain swamps in Australia found that planted swamp gum Eucalyptus camphora seedlings reached a similar height, after one year, in covered and uncovered plots. Covers were plastic or jute mats. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3318https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3318Sun, 11 Apr 2021 12:19:45 +0100Collected Evidence: Collected Evidence: Add cover other than mulch before/after planting trees/shrubs: brackish/saline wetlands One study evaluated the effects, on vegetation, of adding cover other than mulch to brackish/saline wetlands planted with trees/shrubs. The study was in Mexico. VEGETATION COMMUNITY   VEGETATION ABUNDANCE   VEGETATION STRUCTURE   OTHER Growth (1 study): One controlled study on a sandflat in Mexico reported that planted black mangrove Avicennia germinans seedlings grew more in height, over six months, when shaded with black mesh than when not shaded. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3319https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3319Sun, 11 Apr 2021 12:19:58 +0100Collected Evidence: Collected Evidence: Transplant wetland soil before/after planting non-woody plants: freshwater wetlands Two studies evaluated the effects, on vegetation, of transplanting wetland soil to freshwater wetlands planted with emergent, non-woody plants. One study was in the USA and one was in Canada. VEGETATION COMMUNITY Community composition (1 study): One replicated, site comparison study of created freshwater marshes in the USA found that those amended with marsh soil developed plant communities characteristic of wetter conditions than unamended marshes. Most marshes had also been planted. All were ≥5 years old. Overall richness/diversity (1 study): The same study found that marshes amended with marsh soil had similar (dry season) or lower (wet season) plant species richness and diversity to unamended marshes. Most marshes had also been planted. All were ≥5 years old. VEGETATION ABUNDANCE                 Overall abundance (1 study): One replicated, site comparison study of created freshwater marshes in the USA reported that amongst planted marshes, adding marsh soil had no significant effect on overall vegetation cover or biomass, after ≥5 years. Characteristic plant abundance (1 study): One replicated, site comparison study of created freshwater marshes in the USA reported that amongst planted marshes, those also amended with marsh soil had greater cover of wetland-characteristic plants than unamended marshes, after ≥5 years. Individual species abundance (1 study): One replicated, randomized, paired, controlled study in freshwater trenches in Canada found that adding peat-rich soil to pots of mine tailings before planting water sedge Carex aquatilis typically increased its above-ground biomass two growing seasons later. VEGETATION STRUCTURE   OTHER Survival (1 study): One replicated, randomized, paired, controlled study in freshwater trenches in Canada found that adding peat-rich soil to pots of mine tailings either increased or had no significant effect on survival of planted water sedge Carex aquatilis over two growing seasons. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3320https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3320Sun, 11 Apr 2021 12:33:22 +0100Collected Evidence: Collected Evidence: Transplant wetland soil before/after planting non-woody plants: brackish/saline wetlandsWe found no studies that evaluated the effects, on vegetation, of transplanting wetland soil to brackish/saline wetlands planted with emergent, non-woody plants.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3321https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3321Sun, 11 Apr 2021 12:33:42 +0100Collected Evidence: Collected Evidence: Transplant wetland soil before/after planting trees/shrubs: freshwater wetlandsWe found no studies that evaluated the effects, on vegetation, of transplanting wetland soil to freshwater wetlands planted with trees/shrubs.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3322https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3322Sun, 11 Apr 2021 12:33:50 +0100Collected Evidence: Collected Evidence: Transplant wetland soil before/after planting trees/shrubs: brackish/saline wetlandsWe found no studies that evaluated the effects, on vegetation, of transplanting wetland soil to brackish/saline wetlands planted with trees/shrubs.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3323https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3323Sun, 11 Apr 2021 12:34:00 +0100Collected Evidence: Collected Evidence: Introduce nurse plants to aid focal non-woody plants: freshwater wetlands Two studies evaluated the effects, on vegetation, of introducing nurse plants to freshwater wetlands planted with emergent, non-woody plants. Both studies were on the same site in the USA, but used different experimental set-ups. VEGETATION COMMUNITY   VEGETATION ABUNDANCE Characteristic plant abundance (1 study): One replicated, randomized, paired, controlled, before-and-after study in an experimental wet basin in the USA found that sowing potential nurse plants alongside target sedge meadow species reduced the density of the target species overall, and of target grass-like species. Nurse plant addition sometimes affected the abundance of target forbs, depending on the presence of an invasive species and addition of sawdust to plots. Individual species abundance (2 studies): Two replicated, randomized, paired, controlled, before-and-after studies in wet basins in the USA quantified the effect of this action on the abundance of individual plant species. One study reported that sowing potential nurse plants typically had no significant effect on – and sometimes reduced – the biomass of sown porcupine sedge Carex hystericina, after 1–2 growing seasons. The other study reported varying effects of potential nurse plants on the abundance of individual target plant species, depending on factors such as diversity of the nurse crop and addition of sawdust to plots. VEGETATION STRUCTURE   OTHER Germination/emergence (1 study): One replicated, randomized, paired, controlled study in an experimental wet basin in the USA found that the presence of a high-diversity nurse crop reduced the germination rate of sown sedge meadow species. A low-diversity nurse crop had no significant effect on their germination rate. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3324https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3324Sun, 11 Apr 2021 12:42:28 +0100Collected Evidence: Collected Evidence: Introduce nurse plants to aid focal non-woody plants: brackish/saline wetlands One study evaluated the effects, on vegetation, of introducing nurse plants to brackish/saline wetlands planted with emergent, non-woody plants. The study was in the USA. VEGETATION COMMUNITY   VEGETATION ABUNDANCE   VEGETATION STRUCTURE   OTHER Germination/emergence (1 study): One replicated, controlled study in an estuary in the USA reported that planting nurse plants had no effect on germination of sown arrowgrass Triglochin concinna. No seedlings were found around nurse plants or on bare sediment. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3325https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3325Sun, 11 Apr 2021 12:42:44 +0100Collected Evidence: Collected Evidence: Introduce nurse plants to aid focal trees/shrubs: freshwater wetlandsWe found no studies that evaluated the effects, on vegetation, of introducing nurse plants to freshwater wetlands planted with trees/shrubs.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3326https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3326Sun, 11 Apr 2021 12:43:00 +0100Collected Evidence: Collected Evidence: Introduce nurse plants to aid focal trees/shrubs: brackish/saline wetlands One study evaluated the effects, on vegetation, of introducing nurse plants to brackish/saline wetlands planted with trees/shrubs. The study was in the USA. VEGETATION COMMUNITY   VEGETATION ABUNDANCE   VEGETATION STRUCTURE   OTHER Survival (1 study): One replicated, controlled study on a mudflat in the USA found that planting black mangrove Avicennia germinans seedlings into created stands of saltwort Batis maritima did not clearly affect their survival, over seven weeks, compared to planting into bare mud. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3327https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3327Sun, 11 Apr 2021 12:43:09 +0100Collected Evidence: Collected Evidence: Use fences or barriers to protect freshwater wetlands planted with non-woody plants Four studies evaluated the effects, on vegetation, of using fences or barriers to protect freshwater wetlands planted with emergent, non-woody plants. There was one study in each of Canada, the Netherlands, Israel and the USA. VEGETATION COMMUNITY Community composition (1 study): One replicated, site comparison study in the USA found that amongst planted/sown lakeshores, those protected with fences or wave breaks contained different wetland plant communities, after 1–6 years, than those without fences or wave breaks. VEGETATION ABUNDANCE Individual species abundance (1 study): One replicated, controlled study at the edge of a freshwater lake in the Netherlands found that amongst plots planted with lakeshore bulrush Scirpus lacustris, those from which wildfowl had been excluded contained a greater density and biomass of lakeshore bulrush, after 1–2 years, than those that remained open to wildfowl. VEGETATION STRUCTURE   OTHER Survival (2 studies): Two replicated, paired, controlled studies in freshwater wetlands in Canada and Israel reported that protecting emergent herbs, with silt screens or herbivore fencing, increased survival rates over 12–18 months after planting. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3328https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3328Sun, 11 Apr 2021 13:14:37 +0100
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust