Collected Evidence: Collected Evidence: Offer per clutch payment for farmland birds One of two replicated and controlled studies from the Netherlands found that farms with per clutch payments held slightly higher breeding densities of waders, but not higher overall numbers than control farms. One study found no population effects over three years. A replicated and controlled study found higher hatching success on farms with payment schemes than control farms.  Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F196https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F196Wed, 27 Jun 2012 17:50:57 +0100Collected Evidence: Collected Evidence: Paint wind turbines to increase their visibilityA single ex situ experiment found that thick black stripes running across a wind turbine’s blades made them more conspicuous to an American kestrel than control (unpatterned) blades, but that other designs were less visible, or indistinguishable from controls.  Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F258https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F258Wed, 18 Jul 2012 13:40:49 +0100Collected Evidence: Collected Evidence: Mowing roadside vergesA single replicated, controlled study in the USA found that more ducks nested on unmown roadside verges, but that over four years, nesting success on unmown verges fell to below that on mown verges.  Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F259https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F259Thu, 19 Jul 2012 13:19:48 +0100Collected Evidence: Collected Evidence: Other biodiversity: Add compost to the soilAmphibians (0 studies) Birds (0 studies) Invertebrates (1 study): One replicated, controlled study from the USA, found no differences in invertebrate biodiversity between plots with or without added compost. Mammals (0 studies) Plants (4 studies): Four replicated, controlled studies (three randomized) from Italy, Spain, and the USA found more plant biomass in plots with added compost, compared to plots without added compost. One of these studies also found more plant cover and faster tree growth in plots with added compost. Another one also found sixteen species of rare plants only in plots with added compost. Another one found more plants in plots with added compost, compared to plots without added compost, in one of two years, but found similar numbers of plant species in plots with or without added compost. Reptiles (0 studies) Implementation options (0 studies)Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1409https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1409Fri, 19 May 2017 09:39:36 +0100Collected Evidence: Collected Evidence: Other biodiversity: Add manure to the soilAmphibians (0 studies) Birds (0 studies) Invertebrates (0 studies) Mammals (0 studies) Plants (1 study): One replicated, randomized, controlled study from Spain found more plant species in plots with added manure, compared to plots without added manure, in one of three comparisons. Reptiles (0 studies) Implementation options (0 studies)  Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1410https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1410Fri, 19 May 2017 09:42:33 +0100Collected Evidence: Collected Evidence: Other biodiversity: Add sewage sludge to the soilAmphibians (0 studies) Birds (0 studies) Invertebrates (0 studies) Mammals (0 studies) Plants (2 studies): Two replicated, controlled studies from Spain found greater plant cover and faster tree growth in plots with added sewage sludge, compared to plots without it, in some or all comparisons. One of these studies found similar numbers of plant species in plots with or without added sewage sludge. The other one found more plant biomass in plots with added sewage sludge. Reptiles (0 studies) Implementation options (1 study): One study from Spain found faster tree growth in plots with composted or thermally dried sewage sludge, but not with digested sewage sludge, compared to plots without sewage sludge. Another one found no differences in pasture cover, tree growth, or numbers of species between plots with different types of sewage sludge.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1411https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1411Fri, 19 May 2017 09:44:35 +0100Collected Evidence: Collected Evidence: Other biodiversity: Use organic fertilizer instead of inorganicAmphibians (0 studies) Birds (0 studies) Invertebrates (0 studies) Mammals (0 studies) Plants (1 study): One replicated, randomized, controlled study from Italy found more plants and plant biomass, but similar numbers of plant species, in plots with organic fertilizer, compared to plots with inorganic fertilizer. Reptiles (0 studies) Implementation options (0 studies)Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1412https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1412Fri, 19 May 2017 09:46:03 +0100Collected Evidence: Collected Evidence: Other biodiversity: Plant or maintain ground cover in orchards or vineyardsAmphibians (0 studies) Birds (1 study): One site comparison from Spain found more birds and higher bird diversity in a vineyard with resident vegetation (without tillage), compared to a vineyard with bare soil (with conventional tillage), between the vine rows. Invertebrates (0 studies) Fungi (1 study): One replicated, randomized, controlled study from Portugal found more mushrooms and mushroom species in plots with cover crops (without tillage), compared to plots without cover crops (with conventional tillage). Mammals (0 studies) Plants (0 studies) Reptiles (0 studies) Implementation options (3 studies): One site comparison from Spain found more birds and higher bird diversity in a vineyard with mown resident vegetation, compared to a vineyard with herbicide-treated resident vegetation, between the vine rows. One replicated, randomized, controlled study from Portugal found fewer mushrooms and fewer mushroom species, but similar mushroom diversity, in plots with seeded cover crops, compared to resident vegetation. One replicated site comparison from Greece found more flowering plant species, and higher flowering plant cover, in managed orchards, compared to abandoned orchards.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1413https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1413Fri, 19 May 2017 09:47:59 +0100Collected Evidence: Collected Evidence: Other biodiversity: Plant flowersAmphibians (0 studies) Birds (0 studies) Invertebrates (0 studies) Mammals (0 studies) Plants (2 studies): One replicated, paired, controlled study from Italy found similar numbers of plant species in planted flower strips and unplanted field margins, but found higher plant diversity in unplanted margins. One replicated study from the USA found that most flower species persisted for at least two years after planting. Reptiles (0 studies) Implementation options (2 studies): One replicated study from the USA found that more plant species persisted in flower strips when twice as many seeds were sown, but there was no further increase in persistence at higher seeding rates. One replicated, randomized, controlled study from Spain found that tillage had inconsistent effects on the emergence of planted flowers.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1414https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1414Fri, 19 May 2017 09:50:10 +0100Collected Evidence: Collected Evidence: Other biodiversity: Plant hedgerowsAmphibians (0 studies) Birds (0 studies) Invertebrates (0 studies) Mammals (0 studies) Plants (1 study): One replicated, paired site comparison from the USA found no difference in the number of flower species in hedgerows, compared to weedy field edges. Reptiles (0 studies) Implementation options (2 studies): One replicated site comparison from the USA found more plant species in narrow hedgerows, compared to wide hedgerows, and higher plant cover in younger hedgerows, compared to older hedgerows. One replicated site comparison from the USA found higher cover of exotic plants, compared to native plants, in young hedgerows, but not in old hedgerows.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1415https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1415Fri, 19 May 2017 09:51:59 +0100Collected Evidence: Collected Evidence: Other biodiversity: Restore habitat along watercoursesAmphibians (1 study): One replicated site comparison from the USA found similar numbers of amphibian species in restored and remnant sites. Birds (8 studies): Two replicated site comparisons from Spain and the USA found similar numbers of bird species in restored and remnant sites. Two replicated site comparisons from the USA found fewer bird species in restored riparian sites, compared to remnant sites. One replicated site comparison from Spain found similar numbers of birds and bird species in restored contaminated sites and uncontaminated sites. One replicated site comparison from the USA found that an endangered bird nested in restored sites, and had similar nesting success in restored and remnant sites. One replicated site comparison from the USA found that bird populations increased with the area of restored habitat in the landscape, in some comparisons. One replicated site comparison from the USA found similar levels of nest parasitism in restored and remnant sites. Fish (1 study): One before-and-after site comparison from the USA found differences in fish communities, before and after changing river flow. Invertebrates (3 studies): One replicated site comparison from the USA found fewer native ants, but similar numbers of invasive ants, in restored sites, compared to remnant sites. One before-and-after site comparison from the USA found similar numbers of freshwater invertebrates in restored and reference sites, after restoration. One replicated, before-and-after study from the USA found more invertebrates and invertebrate species in plots with added gravel, compared to plots without added gravel, in some comparisons. One replicated before-and-after study from France found relatively more alien species after restoring river flow. Mammals (2 studies): Two replicated site comparisons from the USA found similar numbers of mammal species in restored and remnant sites. Plants (11 studies) Abundance (6 studies): Four replicated site comparisons from Spain and the USA found lower plant cover in restored sites, compared to remnant sites. One of these studies also found higher cover of exotic plants, but another one did not. One replicated, paired site comparison from the USA found similar numbers of flowers in restored and remnant sites. One replicated site comparison from the USA found more seeds, but fewer native seed, in orchards next to restored riparian habitats, compared to orchards next to remnant habitats. One replicated site comparison from the USA found similar exotic plant cover in remnant and restored forests. Diversity (6 studies): Two replicated studies from the USA found fewer native plant species in restored forests, compared to remnant forests. One of these studies also found more exotic species, but another one did not. One replicated site comparison from the USA found more plant species in restored sites, compared to remnant sites. One replicated, paired site comparison from the USA found similar numbers of flower species in restored and remnant sites. One replicated site comparison from the USA found fewer seed species and native seed species in orchards next to restored riparian habitats, compared to remnant riparian habitats. One controlled study from the USA found different plant communities in restored and unrestored habitats. Survival (2 studies): One replicated study from the USA found that about one-third of planted willows survived for one year. One site comparison from the USA found that some species survived after planting, as part of riparian restoration, but others did not. Habitat suitability (1 study): One replicated site comparison from the USA found that vegetation at one of five sites met the criteria for Bell’s Vireo nesting habitat. Size (1 study): One replicated site comparison from the USA found smaller elderberry plants in restored sites. Reptiles (1 study): One replicated site comparison from the USA found similar numbers of reptile species in remnant and restored sites. Implementation options (7 studies) Plants (3 studies): One study from the USA found more tree, shrub, vine, and perennial species, higher canopy cover, and higher native tree cover, in older restored plots, compared to younger restored plots, but this study also found fewer annual plant species, lower vegetation cover, lower annual forb cover, and lower grass cover. One study from the USA found an increase in native species and overstorey cover in restored sites, over time, but it found similar numbers of species and overstorey cover in sites planted at different densities. One study from the USA found that willow cuttings planted on the stream bottom had a higher survival rate than those planted on the streambank or terrace. Birds (3 studies): Three studies from the USA found more birds or bird species in older restored plots, compared to younger restored plots. One of these studies also found that the populations of some bird species increased with tree-planting density. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1416https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1416Fri, 19 May 2017 09:54:10 +0100Collected Evidence: Collected Evidence: Other biodiversity: Exclude grazersAmphibians (1 study): One replicated, randomized, controlled study in wet grasslands in the USA found no difference in the abundance of Yosemite toads between areas with cattle excluded and grazed areas. Birds (2 studies): One replicated site comparison in desert in the USA found more bird species, and more species that were nesting, in areas with sheep excluded, compared to grazed areas. Two replicated site comparisons in desert and wetlands found higher abundances of some or all species of birds in areas with cattle or sheep excluded, compared to grazed areas. The wetland study also found lower abundances, in some comparisons. Fish (2 studies): One replicated site comparison in grasslands in the USA found higher biomass and abundance of golden trout in areas with cattle excluded, compared to grazed areas. Another one found fewer trout nests in part of a stream with a livestock exclosure, compared to part without a livestock exclosure. Invertebrates (5 studies): Two replicated studies (one randomized and controlled) in wetlands and grasslands in the USA found more species or families of invertebrates in areas with cattle excluded, compared to grazed areas, for some or all groups. One replicated, randomized, controlled study in grasslands in the USA found fewer aquatic invertebrate species in areas with cattle excluded, compared to grazed areas, in some comparisons. Two replicated studies (one randomized and controlled) in grasslands in the USA found no difference in invertebrate abundance between ungrazed and cattle-grazed plots. One replicated, before-and-after site comparison in grasslands in the USA found that populations of a threatened, endemic butterfly declined in sites with cattle excluded, but also declined in cattle-grazed sites. Mammals (4 studies): Two replicated site comparisons in deserts and grasslands in Spain and the USA found more mammal species in areas with cattle or sheep excluded, compared to grazed areas. One of these studies also found higher mammal diversity, and both studies found higher mammal abundance, in areas with grazers excluded, compared to grazed areas, in some or all comparisons. One replicated site comparison in desert in the USA found lower abundances of black-tailed hares in ungrazed sites, compared to grazed sites, and one replicated, randomized, controlled study in wooded grassland in the USA found no difference in ground squirrel abundance between ungrazed plots and cattle-grazed plots. Plants (41 studies) Abundance (38 studies): Thirty-two studies (13 replicated, randomized, and controlled) in grasslands, shrublands, wetlands, deserts, and mixed habitats in the USA, Israel, Chile, Spain, and Australia found higher biomass, cover, or abundance of some or all plant groups (or lower cover of non-native species), in areas with cattle, sheep, goats, or alpacas excluded, compared to grazed areas, in some or all comparisons. Fourteen studies (four replicated, randomized and controlled) from the USA, Israel, Spain, and Australia found lower biomass, cover, or abundance of some or all plant groups (or higher cover of non-native species), in areas with grazers excluded, compared to grazed areas, in some comparisons. Five replicated, controlled studies (four randomized) in grasslands in the USA found no difference in the cover of plants (and/or non-native plants) between ungrazed and grazed areas. Diversity (19 studies): Five studies (three replicated) in forests, shrublands, and grasslands in Israel, Spain, and the USA found more species, or fewer non-native species, in areas with cattle or sheep excluded, compared to grazed areas, in some or all comparisons. Nine studies in grasslands and shrublands in Australia, Israel, Spain, and the USA found fewer species or native species, larger decreases in the number of species, or smaller increases in the number of species, in areas with cattle, sheep, or alpacas excluded, compared to grazed areas, in some or all comparisons. Six studies in grasslands, wetlands, and deserts in the USA found no differences in the number of species between areas grazed by cattle, sheep, or alpacas, and ungrazed areas. Four studies in shrublands, grasslands, and wetlands in the USA and Israel found higher plant diversity, or different community composition, in plots with cattle excluded, compared to grazed plots, in some comparisons. Three studies in wetlands and grasslands in the USA found lower plant diversity in plots with cattle excluded, compared to grazed plots, in some comparisons. Three studies in deserts and shrublands in the USA and Israel found no difference in plant diversity between plots with cattle or sheep excluded and grazed plots. Survival (2 studies): One replicated, randomized, controlled study along creeks in the USA found that similar percentages of planted willows survived in pastures with or without cattle excluded. One replicated, randomized, controlled study in grasslands in the USA found higher plant survival in plots with cattle excluded, compared to grazed plots, in some comparisons. Reptiles (1 study): One replicated site comparison in desert in the USA found lower abundances of reptiles, and of some reptile species, in areas with sheep excluded, compared to grazed areas, in some comparisons. Implementation options (1 study): One site comparison in the USA found that more plant species were found in historically cultivated sites that were ungrazed, compared to grazed, but similar numbers of plant species were found in historically uncultivated sites that were ungrazed or grazed.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1417https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1417Fri, 19 May 2017 11:18:59 +0100Collected Evidence: Collected Evidence: Other biodiversity: Use fewer grazersAmphibians (0 studies) Birds (0 studies) Invertebrates (1 study): One replicated, randomized, controlled study in wet grasslands in the USA found more families of insects in streams in areas grazed by cattle at lower, compared to higher, intensities. Mammals (0 studies) Plants (11 studies) Abundance (11 studies): Six studies (four replicated, randomized, and controlled) in grasslands or wood pasture in the USA, Chile, and Israel found higher cover of some species of plants, herbaceous plants, or native plants in areas grazed by cattle or sheep at lower, compared to higher, intensities. One controlled study in forest in Israel found higher cover of woody vegetation in areas with lower grazing intensity. Four of these studies also found lower cover or biomass of some groups of plants in sites with lower grazing intensity. Four studies in grasslands in the USA and Israel found no effect of grazing intensity on biomass, cover, or abundance of plants. Diversity (6 studies): Three replicated, randomized, controlled studies in grasslands and wet grasslands in the USA and Israel found no differences in plant diversity between sites with different cattle-grazing intensities, in some or all comparisons. One of these also found higher diversity in some comparisons and lower diversity in others. One replicated, randomized, controlled study in wet grasslands in the USA found that plant community composition differed in sites with different cattle-grazing intensities, in some comparisons. Two replicated, randomized, controlled studies in grasslands and wet grasslands in Israel and the USA found no differences in the number of plant species between sites with different cattle grazing intensities, in some or all comparisons. One of these studies also found more species in some comparisons and fewer species in others. One controlled study in wood pasture in Chile found fewer native species and more non-native species in paddocks with lower sheep-grazing intensities. Survival (3 studies): Three controlled studies (two replicated and randomized) in grasslands in the USA and forests in Israel found no difference in native grass, tree, or shrub survival in areas grazed by cows at lower, compared to higher, intensities. Reptiles (0 studies) Implementation options (0 studies)Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1418https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1418Fri, 19 May 2017 11:23:37 +0100Collected Evidence: Collected Evidence: Other biodiversity: Use grazers to manage vegetationAmphibians (0 studies) Birds (1 study): One replicated, randomized, controlled study in grasslands in the USA found higher densities of dabbling duck nests, but similar nesting success, in cattle-grazed plots, compared to ungrazed plots. Invertebrates (4 studies): Two replicated studies (one controlled, one site comparison) in grasslands in the USA and Spain found more invertebrates in sheep-, goat-, or cattle-grazed plots, compared to ungrazed plots, in some or all comparisons. One before-and-after study in grassland in the USA found that a threatened, endemic butterfly species did not recolonize a site after grazing was reintroduced. One replicated, randomized, controlled study in grasslands in the USA found fewer invertebrates in plots with simulated grazing, compared to ungrazed plots, but found similar numbers of invertebrate species. One replicated site comparison in forested grasslands in Spain found higher beetle diversity in grazed plots, compared to ungrazed plots, in one of two beetle groups. Two replicated studies (one randomized and controlled) in grasslands in the USA and Spain found different invertebrate communities in grazed and ungrazed plots. Mammals (2 studies): Two replicated, controlled studies (one randomized before-and-after study) in grasslands in the USA found that abundances of some or all rodents were higher, or increased more, on sheep- or cow-grazed plots, compared to ungrazed plots. However, they also found that some species were less abundant or monthly survival was lower on grazed plots. Plants (15 studies) Abundance (14 studies): Eight studies (two meta-analyses; two replicated, randomized, and controlled) from grasslands, shrublands, and forests in the USA, Spain, and France found higher cover or higher abundance of some groups of plants (or lower cover of undesirable plants), on cattle-, sheep-, or goat-grazed plots, compared to ungrazed plots. Six studies (five replicated; one randomized and controlled) from grasslands in Spain and the USA found lower cover or lower abundance of some groups of plants on cattle-, sheep-, or goat-grazed plots, compared to ungrazed plots (or after grazers were reintroduced). Three replicated, controlled studies (two randomized) from grasslands in the USA found similar cover or biomass on grazed or ungrazed plots. Diversity (7 studies): Three studies (one meta-analysis; two replicated site comparisons) from grasslands in the USA found more plant species on grazed plots, compared to ungrazed plots, in some or all comparisons. One of these studies also found fewer species of some plant groups on grazed plots, and two of these stuides also found more non-native species on grazed plots, compared to ungrazed plots. Two replicated, controlled studies (one randomized) in grasslands in the USA and France found no difference in the number of plant species between cattle- or sheep-grazed plots and ungrazed plots. Two replicated controlled studies (one randomized) from grasslands in the USA and France found no difference in plant diversity between cattle- or sheep-grazed plots and ungrazed plots. One replicated, randomized, controlled study grasslands and woodlands in the USA found that plant community composition varied between cattle-grazed and ungrazed plots. Survival (3 studies): Of two studies on purple needlegrass mortality from grasslands in the USA, one replicated, randomized, controlled study found lower mortality on sheep-grazed plots, compared to ungrazed plots, in some comparisons, but found higher mortality in other comparisons, and one replicated, controlled study found no difference in mortality between cattle-grazed plots and ungrazed plots. One replicated, randomized, controlled study from grasslands in the USA found lower germination rates in purple needlegrass seeds from sheep-grazed plots, compared to ungrazed plots, in some comparisons. Reptiles (1 study): One replicated, controlled study in grasslands in the USA found that the abundance of some lizard species increased at a greater rate on cattle-grazed plots, compared to ungrazed plots. Implementation options (1 study): One study from the USA found more invertebrates on plots with simulated grazing, compared to ungrazed plots, when these plots were planted with non-native plants. One study in shrublands in Spain found lower gorse cover in plots grazed by goats, compared to sheep, as well as other differences in plant biomass and cover.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1419https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1419Fri, 19 May 2017 11:26:09 +0100Collected Evidence: Collected Evidence: Other biodiversity: Use rotational grazingAmphibians (0 studies) Birds (0 studies) Invertebrates (0 studies) Mammals (0 studies) Plants (2 studies): One before-and-after study in grasslands in the USA found a higher cover of native plants after the adoption of rotational grazing. One replicated, controlled study in grasslands in the USA found that the density and mortality of a native plant species did not differ between plots with rotational or continuous grazing, but plants had more reproductive stems in plots with rotational grazing, in two of three years. This study also found that plants were larger under rotational grazing, in some comparisons, but smaller in other comparisons. Reptiles (0 studies) Implementation options (0 studies)Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1420https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1420Fri, 19 May 2017 11:31:10 +0100Collected Evidence: Collected Evidence: Other biodiversity: Use seasonal grazingAmphibians (0 studies) Birds (0 studies) Invertebrates (1 study): One replicated, randomized, controlled before-and-after study in wet grasslands in the USA found more aquatic invertebrate species in continuously grazed plots, compared to seasonally grazed plots, in some comparisons. Mammals (0 studies) Plants (8 studies) Abundance (7 studies): Five studies (one meta-analysis; four replicated, randomized, and controlled studies) in grasslands in Israel and the USA found that the cover of native or non-native plants, or the abundance of plants, differed between sites grazed at different times, in some comparisons. Two replicated, randomized, controlled studies from forested pastures in the USA and former farmland in Spain found no difference in plant cover between areas grazed at different times. Diversity (2 studies): Two replicated, randomized, controlled studies in grasslands in Israel and the USA found differences in the number and/or diversity of plant species between plots that were grazed at different times, in some comparisons. Survival (2 studies): One replicated, randomized, controlled study in grasslands in the USA found differences in tree survival between plots grazed at different times. Another one found no difference in bunchgrass survival between plots grazed at different times. Reptiles (0 studies) Implementation options (0 studies)Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1421https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1421Fri, 19 May 2017 11:33:49 +0100Collected Evidence: Collected Evidence: Parrot’s feather: Biological control using fungal-based herbicides We found no evidence for the effects of biological control of parrot’s feather using fungal-based herbicides. 'No evidence' for an action means we have not yet found any studies that directly and quantitatively tested this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1598https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1598Fri, 20 Oct 2017 14:56:08 +0100Collected Evidence: Collected Evidence: Parrot’s feather: Biological control using herbivores One replicated, controlled laboratory study in Portugal found that grass carp did not reduce biomass or cover of parrot’s feather. Two replicated, randomized field studies in Argentina and the USA found that stocking with grass carp reduced the biomass or abundance of parrot’s feather. One field study in South Africa reported reduced growth of parrot’s feather following the release a South American leaf-feeding Lysathia. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1599https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1599Fri, 20 Oct 2017 14:58:11 +0100Collected Evidence: Collected Evidence: Paint turbines to reduce insect attraction We found no studies that evaluated the effects of painting turbines to reduce insect attraction on bat populations. ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1959https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F1959Tue, 04 Dec 2018 15:21:05 +0000Collected Evidence: Collected Evidence: Outfit trawls with a raised footrope We found no studies that evaluated the effects of outfitting trawls with a raised footrope on subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2129https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2129Tue, 22 Oct 2019 10:25:27 +0100Collected Evidence: Collected Evidence: Offset habitat loss from human activity by restoring or creating habitats elsewhere Two studies examined the effects of offsetting habitat loss from human activity by restoring or creating habitats elsewhere on subtidal benthic invertebrate populations. One study was in the Delaware Bay (USA), the other in the Persian Gulf (Kuwait).   COMMUNITY RESPONSE (1 STUDY) Overall richness/diversity (1 study): One study in the Persian Gulf found that an area of low ecological value restored to offset habitat lost to land reclamation was colonized by over 198 invertebrate species. POPULATION RESPONSE (0 STUDIES) OTHER (1 STUDY) Biological production (1 study): One study in Delaware Bay found that an artificial reef built to offset lost soft-sediment habitat had higher annual secondary production/unit area from sessile invertebrates, but lower total annual secondary production, compared to habitat similar to that lost. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2265https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2265Wed, 23 Oct 2019 11:03:46 +0100Collected Evidence: Collected Evidence: Organise educational marine wildlife tours to improve behaviours towards marine invertebrates We found no studies that evaluated the effects of organising educational marine wildlife tours to induce behavioural changes and increase engagement in marine conservation on human behaviour and/or subtidal benthic invertebrate populations.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2282https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2282Wed, 23 Oct 2019 13:39:32 +0100Collected Evidence: Collected Evidence: Organise vessel monitoring systems We found no studies that evaluated the effects of organising monitoring systems on marine fish populations.  ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this intervention during our systematic journal and report searches. Therefore, we have no evidence to indicate whether or not the intervention has any desirable or harmful effects. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2739https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2739Tue, 02 Feb 2021 15:11:19 +0000Collected Evidence: Collected Evidence: Offer incentives to fishers for recovering, reusing or recycling fishing gear We found no studies that evaluated the effects of offering incentives to fishers for recovering, reusing or recycling fishing gear on marine and freshwater mammal populations. ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2887https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F2887Mon, 08 Feb 2021 11:49:52 +0000Collected Evidence: Collected Evidence: Offer reptile-related eco-tourism to improve behaviour towards reptiles Two studies evaluated the effects on reptile populations of offering reptile-related eco-tourism to improve behaviour towards reptiles. One study was in the USA and one was in St Kitts and Nevis. COMMUNITY RESPONSE (0 STUDIES) POPULATION RESPONSE (0 STUDIES) BEHAVIOUR (0 STUDIES) OTHER (1 STUDY) Human behaviour change (1 study): One study in the USA reported that 32% of respondents to a survey said they would have gone to look for a nesting turtle if they had not been able to join a supervised turtle watch. One study in St Kitts and Nevis found that people who attended a leatherback turtle tour reported that they would be more conscientious of how their behaviours on the beach affected sea turtles. Collected Evidencehttps%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3680https%3A%2F%2Fwww.conservationevidence.com%2Factions%2F3680Fri, 10 Dec 2021 14:01:25 +0000
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust