Conservation Evidence strives to be as useful to conservationists as possible. Please take our survey to help the team improve our resource.

Providing evidence to improve practice

The journal, Conservation Evidence

Our online journal publishes research, monitoring results and case studies on the effects of conservation interventions. All papers include some monitoring of the effects of the intervention and are written by, or in partnership with, those who did the conservation work. It includes interventions such as habitat creation, habitat restoration, translocations, reintroductions, invasive species control, and education or integrated conservation development programmes, from anywhere around the world.

Watch a brief video on our journal here

A volume is created each year with peer-reviewed papers published throughout the year. We now accept Short Communications as well as standard papers.

Special issues contain new papers on a specific topic.

Virtual collections collate papers published in the journal on specific topics such as management of particular groups of species.

To search for papers on a specific topic within the journal select Advanced search, enter your keyword(s) and within the Source box type: "conservation evidence". This will take you to a list of actions that contain Conservation Evidence papers. In order to see the list of individual Conservation Evidence papers on the topic, please click on 'You can also search Individual Studies' at the top of this page.

Volume 17

The use of storm fragments and biodegradable replanting methods allows for a low-impact habitat restoration method of seagrass meadows, in the eastern Aegean Sea
Ward E. A., Meek S. K. , Gordon D. M., Cameron T. C. , Steer M. D., Smith D. J. , Miliou A. & Tsimpidis T. (2020), 17, 1-6

Seagrasses are important marine ecosystems but are vulnerable to physical damage from anthropogenic activities such as anchoring and trawling. Replanting damaged areas can represent a viable restoration strategy, yet current methods rely on the removal of plants from existing meadows and in some cases the use of non-sustainable planting materials. In this paper, we present evidence of a sustainable replanting strategy. Storm fragments of the endemic Mediterranean seagrass, neptune grass Posidonia oceanica were collected from the shore and shallow water, both the plagiotropic and orthotropic (horizontal and vertical) growth forms were then replanted using one of two biodegradable materials, coconut fibre pots or bamboo stakes, to secure them to the seafloor. Establishment of plagiotropic fragments were increased by bamboo anchorage (x̅ = 89% SE ± 0%) compared to orthotropic storm fragments (x̅ = 66.5% SE ± 6.5%). By contrast a coconut fibre method resulted in greater establishment of orthotropic fragments (x̅ = 79% SE ± 7%) compared to plagiotropic (x̅ = 51% SE ± 11%). Fragments showed some blade growth, but little shoot growth after 15 months. The fragment shoot and blade growth did not differ between the plagiotropic or orthotropic fragments replanted by bamboo stakes or coconut fibre pot. Our results suggest that the use of storm fragments and biodegradable anchoring materials constitutes a viable, non-destructive replanting technique in seagrass restoration. Furthermore success can be increased by selecting a growth-form appropriate planting method.

The translocation of reptiles from development sites is a frequent but controversial intervention to resolve reptile-development conflicts. A general lack of post-translocation monitoring means that the fate of translocated reptiles is largely unknown. Here we report on the outcome of six reptile translocations carried out to mitigate the impacts of development. Through detailed post-translocation monitoring, we sought to determine whether translocated reptiles established populations within the receptor sites.

To determine the effect of translocation, we investigated six sites within the UK that had received populations of translocated slow-worm Anguis fragilis, viviparous lizard Zootoca vivipara, adder Vipera berus and / or grass snake Natrix helvetica. Identification photographs were taken of all reptiles during the translocation. Following release, between one and three years of post-translocation monitoring was undertaken; during the monitoring, identification photographs were again collected to establish whether captured individuals were part of the translocated populations.  

Very few translocated individuals were encountered during the post-translocation monitoring. The mean number of translocated reptiles was 98 (SE 19.61). Of these, an average of 1.5 (SE 0.72) individuals or 1.6% of the population were captured during the monitoring. No recaptures of translocated reptiles were made at three (50%) of the study sites. The low recapture rates of translocated reptiles could be due to mortality, imperfect detection (including inaccurate identification of individuals) or post-translocation dispersal. There is some limited evidence to support each of the possible options, but post-translocation dispersal is considered to be the most likely explanation.

The study found no confirmatory evidence that mitigation-driven translocations are compensating for the losses of populations to development.

A successful Pacific rat Rattus exulans eradication on tropical Reiono Island (Tetiaroa Atoll, French Polynesia) despite low baiting rates
Samaniego A., Griffiths R., Gronwald M., Murphy F., Le Rohellec M., Oppel S., Meyer J-Y. & Russell J. C. (2020), 17, 12-13

We successfully eradicated rats from Reiono Island despite reducing the interval between bait applications from the recommended 10-21 days to 7 days, and reducing bait availability from the recommended >4 nights, to 2 nights. We focused on meeting the eradication principle of exposing all rats to poison bait by ensuring complete bait coverage across the island. Relative to current practice our approach saved 3,032 kg of bait and 168 person-days of labour on a 22-ha island, or US$42,626 in bait and accommodation costs. In line with other recent cases, the Reiono eradication suggests that using moderate baiting rates and short baiting intervals can lead to significant financial and logistical savings. Yet, baiting strategies should be tailored to the risk environment of each project.

Solitary bees have experienced a decline in both diversity and abundance over the past decade. Although their foraging requirements have been the subject of some recent studies, their nesting requirements have received little attention. Some species of ground-nesting solitary bees have shown an affinity for hard, bare ground as preferred locations for nests. Here we assessed two different methods for creating bare ground plots on farmland and observed the different rates at which these plots recruited ground-nesting bees. Three approximately 6 m2 plots were created at each of 19 locations. One was scraped bare using machinery, a second was sprayed-off with herbicide, and the third was left undisturbed as a control plot. The results showed a significantly greater number of nests in the scraped plots compared to the sprayed or control plots, with the majority of these nests being created in April. This trial shows that an agri-environment scheme could be effective to support the creation of nesting areas for solitary bees on farmland.