Use herbicides to control mid-storey or ground vegetation

How is the evidence assessed?
  • Effectiveness
  • Certainty
  • Harms

Study locations

Key messages

  • Three studies (including two randomized, replicated, controlled studies) in the USA found that understory removal using herbicide had no effect or some negative effects on amphibian abundance.
  • One replicated, site comparison study in Canada found that following logging American toad abundance was similar and wood frogs lower in stands with herbicide treatment and planting compared to stands left to regenerate naturally.


About key messages

Key messages provide a descriptive index to studies we have found that test this intervention.

Studies are not directly comparable or of equal value. When making decisions based on this evidence, you should consider factors such as study size, study design, reported metrics and relevance of the study to your situation, rather than simply counting the number of studies that support a particular interpretation.

Supporting evidence from individual studies

  1. A controlled, before-and-after study in 1994–1997 in a hardwood forest in Virginia, USA (Harpole & Haa 1999) found that understory removal using herbicide did not affect the relative abundance of salamanders. Captures did not differ significantly before and after understory removal (9 vs 11/search). Abundance did not differ significantly within the untreated plot over time (1994: 10; 1995–1997: 8–10). Treatment was within a 2 ha plot. Salamanders were monitored along 15 x 2 m transects using artificial cover objects (50/plot).

    Study and other actions tested
  2. A randomized, replicated, controlled study in 1997–1998 of pine sandhills in Florida, USA (Litt et al. 2001) found that understory removal using herbicide did not result in increased abundance of amphibians. In 1998, capture rates were significantly lower in understory removal plots and prescribed burning plots than fire suppressed (control) plots for southern toad Bufo terrestris (herbicide: 0.002; burn: 0; no burn: 0.008; reference: 0.003 captures/trap days). However, capture rates did not differ between understory removal, burned or fire suppressed treatments for oak toad Bufo quercicus or eastern narrowmouthed toad Gastrophryne carolinensis in 1998, or any species in 1997. In 1997 (not 1998), herpetofauna similarity indices indicated that burned plots were significantly more similar to reference (frequently burned) sites than understory removal or fire-suppressed plots (burn: 0.76; herbicide: 0.49; no burn: 0.49). Treatments were in randomly assigned 81 ha plots within four replicate blocks in spring 1997. Data were also collected from four frequently burned reference sites. Monitoring was undertaken using drift-fencing and pitfall traps in April–August 1997–1998.

    Study and other actions tested
  3. A randomized, replicated, controlled in 1993–1999 of four harvested forests in Virginia, USA (Knapp et al. 2003) found that salamander abundance was similar in plots with and without herbicide treatment (7 vs 6/30 m2; see also (Homyack & Haas 2009). Four sites had 2 ha plots with herbicide application (Garlon4) to reduce woody shrubs and a control with no management. Salamanders were monitored on 9–15 transects (2 x 15 m)/plot at night in April–October. Monitoring was undertaken 1–2 years before and 1–4 years after treatment.

    Study and other actions tested
  4. A replicated, site comparison study in 2001–2002 of boreal forest stands in Ontario, Canada (Thompson et al. 2008) found that herbicide treatment and planting after logging did not result in higher amphibian abundance compared to stands left to regenerate naturally. Wood frogs Rana sylvatica were significantly less abundant in 20–30-year-old stands that had been managed by planting and herbicide treatment with or without tree scarring (0.06 captures/trap night) compared to those that had been left to regenerate naturally (0.09). Capture rates in 32–50-year-old managed stands (0.07) did not differ significantly from naturally regenerated (0.12) and uncut stands (0.06). For American toads Bufo americanus, there was no significant difference in capture rates between treatments or ages of stands (managed: 0.02–0.04; natural regeneration: 0.02–0.03; uncut: 0.03). Nineteen stands that had received each treatment and five uncut stands were surveyed. Drift-fencing with pitfall traps were used for monitoring in August–September 2001–2002.

    Study and other actions tested
  5. In a continuation of a previous study (Knapp et al. 2003), a randomized, replicated, controlled study in 19942007 of six hardwood forests in Virginia, USA (Homyack & Haas 2009) found that salamander abundance was similar in plots with mid-storey herbicide treatment and without up to 13-years post-harvest (8 vs 7/transect). There were six sites with 2 ha plots randomly assigned to treatments: herbicide application (triclopyr and imazapyr) to reduce woody shrubs and a control with no management. Treatments were in 1994–1998 and salamanders were monitored at night along nine 15 x 2 m transects/site.

    Study and other actions tested
Please cite as:

Smith, R.K., Meredith, H. & Sutherland, W.J. (2020) Amphibian Conservation. Pages 9-64 in: W.J. Sutherland, L.V. Dicks, S.O. Petrovan & R.K. Smith (eds) What Works in Conservation 2020. Open Book Publishers, Cambridge, UK.

Where has this evidence come from?

List of journals searched by synopsis

All the journals searched for all synopses

Amphibian Conservation

This Action forms part of the Action Synopsis:

Amphibian Conservation
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.

Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust