Action Synopsis: Bird Conservation About Actions

Use aversive conditioning to reduce nest predation by mammalian predators

How is the evidence assessed?
  • Effectiveness
  • Certainty
  • Harms
    not assessed

Study locations

Key messages

  • One study from the USA and three  ex situ experiments found evidence for lower consumption of eggs treated with repellent chemicals.
  • However, when untreated eggs were provided simultaneously with or after treated eggs, no studies found evidence for continued lower predation. I.e. aversive conditioning did not occur. In addition, a study from the USA found no effect of repellent chemicals on predation rates of genuine nests.


About key messages

Key messages provide a descriptive index to studies we have found that test this intervention.

Studies are not directly comparable or of equal value. When making decisions based on this evidence, you should consider factors such as study size, study design, reported metrics and relevance of the study to your situation, rather than simply counting the number of studies that support a particular interpretation.

Supporting evidence from individual studies

  1. A replicated and controlled before-and-after experiment in southern Connecticut, USA, in June-September 1986 (Conover 1990), found that distributing 40 eggs treated with 20-25 mg of emetine dihydrochloride along 0.7-1.0 km transects at three second growth deciduous forest sites each week for three weeks reduced consumption of eggs by mammalian predators (raccoons, opossums, skunks and rodents) by >80% during treatment and for the following three week period (from >75% of eggs predated daily to <15%). There was no corresponding decrease at five control sites, where only untreated eggs were presented (daily predation rates rose from 3% to 90%). However, a randomised, replicated and controlled paired sites study in July-September 1987 found that egg predation was not significantly different at four experimental sites, where 10 eggs treated with 20-25 mg of emetine dihydrochloride and 10 untreated eggs were placed in set locations twice a week, compared to control sites, where only untreated eggs were provided.

    Study and other actions tested
  2. A randomised, replicated and controlled experiment on ten captive coyotes Canis latrans (each tested with ten treatments over ten consecutive three day trials) in Utah, USA (Hoover & Conover 1998), found that no differences in food consumption, time delay before eating or amount of time spent eating when one of ten volatile chemicals was placed adjacent to food (so that they could be smelt but not ingested) at either the first or second exposure or in post-exposure trials. However, it also found that injecting eggs with 1 ml of one of ten volatile chemicals reduced the amount of egg consumed during both first and second exposures, compared to control eggs, for all chemicals except ammonia. However, egg consumption during post-treatment trials was unchanged following treatment and all eggs in post-treatment trials were opened. The ten chemicals tested were: allyl sulphide (garlic), ammonia, capsaicin (chilli pepper), chloroacetophenone (chemical mace), cinnamaldehyde (hot cinnamon), ethyl acetate, isoamyl nitrite (smelling salts), napthaldehyde (mothballs), pulegone (mint extract) and undecanone (commercially available dog repellent). When injected, pulegone, allyl sulphide and cinnamaldehyde reduced the amount of egg consumed significantly more than the other chemicals.

    Study and other actions tested
  3. A replicated, controlled experiment with 12 captive coyotes Canis latrans (Hoover & Conover 2000) found that they preferentially consumed eight untreated eggs from untreated nests, compared to four untreated eggs from nests sprayed with pulegone (mint extract) or four eggs sprayed with pulegone, over a three day period. A second trial with 29 coyotes found that, during a five-day conditioning period when coyotes were presented with eggs injected with 1 ml pulegone, they opened and consumed fewer eggs each day (from 100% to <40% opened, <8% consumed). However, after the conditioning period, coyotes continued to eat 100% of untreated eggs when presented with them, either singly or alongside pulegone injected and sprayed eggs.

    Study and other actions tested
  4. A randomised, replicated and controlled ex situ experiment in the UK (Messi et al. 2002) found that administering thiabendazole orally to 33 rats after they ate either a chicken Gallus gallus domesticus or quail Cortunix coturnix egg reduced the rate that they subsequently fed on either chicken or quail eggs, compared to control rats. Experimental rats ate 83% fewer eggs over eight post-conditioning tests and spent 80% less time eating eggs. No rats offered the same type (chicken or quail) of egg as in the experiment ate it in the first post-conditioning trial and only 20% of those offered the alternative egg ate it. All effects grew weaker over the eight post-conditioning tests, with most experimental combinations being indistinguishable from controls after eight tests.

    Study and other actions tested
Please cite as:

Williams, D.R., Child, M.F., Dicks, L.V., Ockendon, N., Pople, R.G., Showler, D.A., Walsh, J.C., zu Ermgassen, E.K.H.J. & Sutherland, W.J. (2020) Bird Conservation. Pages 137-281 in: W.J. Sutherland, L.V. Dicks, S.O. Petrovan & R.K. Smith (eds) What Works in Conservation 2020. Open Book Publishers, Cambridge, UK.


Where has this evidence come from?

List of journals searched by synopsis

All the journals searched for all synopses

Bird Conservation

This Action forms part of the Action Synopsis:

Bird Conservation
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 19

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.

Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape Programme Red List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Bern wood Supporting Conservation Leaders National Biodiversity Network Sustainability Dashboard Frog Life The international journey of Conservation - Oryx British trust for ornithology Cool Farm Alliance UNEP AWFA Butterfly Conservation People trust for endangered species Vincet Wildlife Trust