Conservation Evidence strives to be as useful to conservationists as possible. Please take our survey to help the team improve our resource.

Providing evidence to improve practice

Action: Translocate habitat-forming (biogenic) species - Translocate reef-forming corals Subtidal Benthic Invertebrate Conservation

Key messages

Read our guidance on Key messages before continuing

  • Two studies examined the effects of translocating habitat-forming corals on associated subtidal benthic invertebrate populations. One was in Tayabas Bay (Philippines) and one in the South China Sea (Philippines).

 

COMMUNITY RESPONSE (2 STUDIES)

  • Overall community composition (1 study): One replicated, controlled, before-and-after study in the South China Sea found that following coral translocation associated invertebrate communities did not change and remained similar to plots without translocated corals.
  • Overall richness/diversity (2 studies): One replicated, controlled, before-and-after study in the South China Sea found that following coral translocation richness of associated invertebrates increased but also increased in plots without corals, likely due to spill-over. One replicated, controlled study in Tayabas Bay found that richness of associated invertebrates was higher in plots with translocated corals than in plots without.

POPULATION RESPONSE (1 STUDY)

  • Overall abundance (1 study): One replicated, controlled, before-and-after study in the South China Sea found that following coral translocation abundance of associated invertebrates increased and became higher than in plots without translocated corals.

Supporting evidence from individual studies

1 

A replicated, controlled study in 2000–2002 in five coral reef sites in Tayabas Bay, Philippines (Yap 2009) found that plots with translocated corals developed higher invertebrate species richness than plots without corals, 9–27 months after translocation. After coral translocation, invertebrate species richness was higher in plots with corals (7–8 species) than in nearby and more distant plots without corals (3–6 species), but was lower than at the source site where the corals originated (10 species).  Overall, 83-95% of translocated corals survived. Each of four sites of rocky seabed had eighteen 1 m2 plots: six with translocated corals, six nearby without corals (interspersed with transplanted coral plots), and six 100 m away without corals. Between April 2000 and November 2001, three coral species were translocated from a nearby pristine reef (source site) to each translocated plot: Acropora palifera (2/plot), Porites cylindrica (2/plot), and Porites lobata (3/plot). In July 2002 (9–27 months after translocation), invertebrate species (excluding corals) were recorded during visual census by divers in all experimental plots, and in six plots at the source site.

2 

A replicated, controlled, before-and-after study in 2010–2012 of nine plots in a restored coral reef off Santiago Island, northwestern Philippines, South China Sea (dela Cruz et al. 2014) found that over the 19 months following translocation of corals, invertebrate species richness increased similarly at sites with and without translocated corals, abundance increased more at sites with than without corals, and community composition remained similar across all plots. Before translocation, all plots had similar species richness (0.3–0.5 species/plot), abundance (0.3–1.2/plot), and community composition (community data presented as graphical analyses). After 19 months, species richness had increased in all plots and was similar in plots with corals (3.0–3.3) and without (2.9). Abundance had increased in all plots but was higher in plots with corals (16–26) than without (3). Community composition remained similar in all plots after 19 months. After 19 months, 68–89% of translocated corals had survived. Increases in richness and abundance observed in plots without translocated corals were considered by authors to be due to spill-over effects from plots with translocated corals. Three clusters (50 m apart) of three plots (16 m2; 5 m apart), were used for coral reef restoration. In each cluster, staghorn corals, Acropora intermedia and Acropora pulchra, were translocated to two plots (25 fragments/species in one, 50 fragments/species in the other), and one plot was left without corals. In July 2010 (before translocation), July 2011 (12 months after translocation), and February 2012 (19 months after translocation) divers visually identified and counted invertebrates belonging to six genera (see paper for details) in all plots.

Referenced papers

Please cite as:

Lemasson, A.J., Pettit, L.R., Smith, R.K., and Sutherland, W.J. (2019) Subtidal Benthic Invertebrate Conservation: Global Evidence for the Effects of Interventions. Synopses of Conservation Evidence Series. University of Cambridge, Cambridge, UK.