Providing evidence to improve practice

Individual study: Agricultural intensification and de-intensification differentially affect taxonomic diversity of predatory mites, earthworms, enchytraeids, nematodes and bacteria

Published source details

Postma-Blaauw M.B., de Goede R.G.M., Bloem J., Faber J.H. & Brussaard L. (2012) Agricultural intensification and de-intensification differentially affect taxonomic diversity of predatory mites, earthworms, enchytraeids, nematodes and bacteria. Applied Soil Ecology, 57, 39-49


This study is summarised as evidence for the intervention(s) shown on the right. The icon shows which synopsis it is relevant to.

Restore or create low input grasslands Soil Fertility

A randomized, replicated experiment in 2001-2003 on sandy-loam in the Netherlands (Postma-Blaauw et al. 2012) found that restoring arable land to grassland increased the diversity of soil animals. There was a higher diversity of bacteria (68 DNA bands per experimental plot), nematodes (28 genera per experimental plot), earthworms (3 species per experimental plot), potworms (4 species) and predatory mites (10 species) in new grassland than new arable land (65 DNA bands, 21 genera, 0 species, 4 species, and 4 species respectively). There were four experimental systems: long-term grassland (dominant species included fescue Festuca rubra, velvet grass Holcus lanatus, sweet vernal grass Anthoxanthum oderatum, sorrel Rumex acetosa, and buttercup Ranunculus spp.), new grassland, long-term and new arable land (an oat Avena sativa, maize Zea mays, barley Hordeum vulgare, potato Solanum tuberosum rotation). There were three replicates of 10 x 12 m field plots. Soil samples were taken to 10 cm depth.