Study

Effects of pesticides and fertilizer on invertebrate populations of grass and wheat plots in Kent in relation to productivity and yield

  • Published source details Linzell B.S. & Madge D.S. (1986) Effects of pesticides and fertilizer on invertebrate populations of grass and wheat plots in Kent in relation to productivity and yield. Grass and Forage Science, 41, 159-174.

Actions

This study is summarised as evidence for the following.

Action Category

Reduce fertilizer, pesticide or herbicide use generally

Action Link
Farmland Conservation
  1. Reduce fertilizer, pesticide or herbicide use generally

    A replicated, randomized, controlled study of arable fields between 1982 and 1984 in England (Linzell & Madge 1986) found that the abundance of soil nematodes (Nematoda), slugs (Gastropoda) and fly (Diptera) larvae was greater in plots without pesticide (insecticide) applications. In spring 1983, numbers of nematodes were significantly higher in the plots without pesticide applications (5.5-6.5/50 g) compared to plots sprayed two weeks previously (2.5-3.5). Numbers of slugs did not differ between treatments in the first year but were significantly lower in sprayed plots in 1983-1984 (1-3 vs 10-26/tile). Overall, numbers of fly larvae were higher in plots without pesticide applications (25-75 individuals/replicate cores vs 7-65). Fertilizer did not tend to have a significant effect on soil invertebrate numbers. Four replicated, randomized blocks each comprising 10 plots (6 x 3 m) were established. Treatments were three different grass (Italian rye grass Lolium multiflorum, perennial rye grass L. perenne, existing mixed ley) and two wheat regimes (‘Norman’ and ‘Armada’ varieties), with (phorate and aldicarb; three applications) and without pesticide treatments. Fertilizer was applied to all plots (except wheat ‘Norman’ in 1982) and fungicides applied to wheat when required. Invertebrates were sampled in the spring and autumn after pesticide applications. Free-living soil nematodes and fly larvae were sampled by taking two or four randomly located soil samples (soil corer: 2.5 x 15 cm and 6.5 x 8 cm respectively) from each plot. Slugs were sampled using two wooden tiles/plot with slug pellets underneath, which were collected after 4-7 days.

     

Output references
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust